Japan-Lithuania Opacity Database for Kilonova (version 2.1)
Daiji Kato and Izumi Murakami (National Institute for Fusion Science, Japan)
Masaomi Tanaka and Smaranika Banerjee (Tohoku University, Japan)
Gediminas Gaigalas, Laima Kitovienė, and Pavel Rynkun (Vilnius University, Lithuania)
Numerical data for atomic data and opacities of heavy elements for ejecta of neutron star mergers. The atomic data[1-10] are calculated using HULLAC (Hebrew University Lawrence Livermore Atomic Code)[11] and GRASP (General-purpose Relativistic Atomic Structure Package)[12,13].
- M. Tanaka, D. Kato, G. Gaigalas, K. Kawaguchi
“Systematic opacity calculations for kilonovae”
Monthly Notices of the Royal Astronomical Society 496 (2020) 1369-1392.
- D. Kato, M. Tanaka, G. Gaigalas, L. Kitovienė, P. Rynkun
"Systematic opacity calculations for kilonovae – II. Improved atomic data for singly ionized lanthanides"
Monthly Notices of the Royal Astronomical Society 535 (2024) 2670-2686.
- G. Gaigalas, D. Kato, P. Rynkun, L. Radžiūtė, M. Tanaka
"Extended Calculations of Energy Levels and Transition Rates of Nd ii-iv Ions for Application to Neutron Star Mergers"
The Astrophysical Journal Supplement Series 240 (2019) 29.
- L. Radžiūtė, G. Gaigalas, D. Kato, P. Rynkun, M. Tanaka
"Extended Calculations of Energy Levels and Transition Rates for Singly Ionized Lanthanide Elements. I. Pr–Gd"
The Astrophysical Journal Supplement Series 248 (2020) 17;
"Extended Calculations of Energy Levels and Transition Rates for Singly Ionized Lanthanide Elements. II. Tb−Yb"
The Astrophysical Journal Supplement Series 257 (2021) 29.
- L. Kitovienė, G. Gaigalas, P. Rynkun, M. Tanaka, D. Kato
"Theoretical Investigation of the Ge Isoelectronic Sequence"
Journal of Physical and Chemical Reference Data 53 (2024) 033101.
- G. Gaigalas, P. Rynkun, N. Domoto, M. Tanaka, D. Kato, L. Kitovienė
"Theoretical investigation of energy levels and transitions for Ce III with applications to kilonova spectra"
Monthly Notices of the Royal Astronomical Society 530 (2024) 5220.
- L. Radžiūtė, G. Gaigalas
"Theoretical investigation of Sb-like sequence: Sb I, Te II, I III, Xe IV, and Cs V"
Atomic Data and Nuclear Data Tables 152 (2023) 101585.
- L. Radžiūtė, G. Gaigalas
"Energy levels and transition properties for As-like ions Se II, Br III, Kr IV, Rb V, and Sr VI"
Atomic Data and Nuclear Data Tables 147 (2022) 101515.
- P. Rynkun, S. Banerjee, G. Gaigalas, M. Tanaka, L. Radžiūtė, D. Kato
"Theoretical investigation of energy levels and transition for Ce IV"
Astronomy & Astrophysics 658 (2022) A82.
- G. Gaigalas, P. Rynkun, S. Banerjee, M. Tanaka, D. Kato, L. Radžiūtė
"Theoretical investigation of energy levels and transitions for Pr iv"
Monthly Notices of the Royal Astronomical Society 517 (2022) 281.
- A. Bar-Shalom, M. Klapisch, J. Oreg
“HULLAC, an integrated computer package for atomic processes in plasmas”
JQSRT 71 (2001) 169-188.
- P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, I.P. Grant
"New version: Grasp2K relativistic atomic structure package"
Computer Physics Communications 184 (2013) 2197-2203.
- C. Froese Fischer, G. Gaigalas, P. Jönsson, J. Bieroń
"GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package"
Computer Physics Communications 237 (2019) 184-187.
This database is developed by Atomic and Molecular Process Research Section of NIFS in collaboration with Masaomi Tanaka Laboratory of Astronomical Institute in Tohoku University and Computational Atomic Structure Group of Vilnius University.
The work was supported by the NINS program for cross-disciplinary science study, the NINS program of Promoting Research by Networking among Institutions (Grant Number 01411702), the Japan Society for the Promotion of Science (JSPS) Bilateral Joint Research Project, JSPS KAKENHI grant (JP19H00694, JP23H00127), and NIFS Collaborative Research Program (NIFS22KIIF005, NIFS24KIIQ013).
In your publications by using our database, please refer to the followings,
D. Kato, I. Murakami, M. Tanaka, S. Banerjee, G. Gaigalas, L. Kitovienė, P. Rynkun, Japan-Lithuania Opacity Database for Kilonova (2021), http://dpc.nifs.ac.jp/DB/Opacity-Database/, (version #.#) and the reference in each data file.
Version history 1.0: 2021/11/29
Version history 1.1: 2022/12/13
Due to an error in the program, log(gf) values in the energy levels and transition data were not correct in version 1.0.
The error has been corrected, and correct log(gf) values are given in version 1.1.
This error affected only log(gf) values in this database: it does not affect the opacity data nor the results in Tanaka et al. (2020).
We apologize this error. We thank Dr. Andrey Bondarev for pointing out this issue.
Version history 2.0: 2025/1/18
HULLAC atomic data for singly ionized lanthanides of Z=59-70 are updated.
Benchmarking atomic data calculated by using GRASP for singly ionized lanthanides of Z=59-70 and doubly and triply ionized Nd ions became available from this version.
Version history 2.1: 2025/4/4
Benchmarking atomic data calculated by using GRASP for As(33) II, Se(34) II-III, Br(35) III-IV, Kr(36) IV-V, Rb(37) V, Sr(38) VI, Sb(51) I, Te(52) II, I(53) III, Xe(54) IV, Cs(55) V, Ce(58) III-IV, Pr(59) IV, and Th(90) III are available from this version.
Please contact us by email:
Energy level and transition data
readme.txt (information about datafiles)
Download all HULLAC data (about 1.1 GB)
Download all GRASP data (about 400 MB)
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
1st |
1 H |
|
2 He |
2nd |
3 Li |
4 Be |
|
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne |
3rd |
11 Na |
12 Mg |
|
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar |
4th |
19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
5th |
37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
6th |
55 Cs |
56 Ba |
57-71 La-Lu |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn |
7th |
87 Fr |
88 Ra |
89-103 Ac-Lr |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Nh |
114 Fl |
115 Mc |
116 Lv |
117 Ts |
118 Og |
Lanthanide |
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu |
Actinide |
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr |
Planck mean opacity for representative abundance distribution
readme.txt (information about density, temperature, time grids, )
Ye = 0.10,
0.15,
0.20,
0.25,
0.30,
0.35,
0.40

Fig.1: Abundance distribution for diffrent Ye (Wanajo et al. 2014).

Fig.2: Density dependence of the Planck mean opacity for Ye = 0.25 and t = 1 day.
The decline of the opacity at high temperature is due to lack of atomic data for highly ionized ion.
This effect is significant for lower density because ionization becomes more efficient (see red curve).

Fig.3: Temperature and density dependence of the Planck mean opacity for Ye = 0.25 and t = 1 day.
go to Top
Copyright © 2021-2025 National Institute for Fusion Science. All Rights Reserved.