Japan-Lithuania Opacity Database for Kilonova (version 1.0)

Daiji Kato and Izumi Murakami (National Institute for Fusion Science, Japan)
Masaomi Tanaka and Smaranika Banerjee (Tohoku University, Japan)
Gediminas Gaigalas, Laima Radžiūtė, and Pavel Rynkun (Vilnius University, Lithuania)


Numerical data for atomic data and opacities of heavy elements for ejecta of neutron star mergers [1]. The atomic data are calculated using HULLAC (Hebrew University Lawrence Livermore Atomic Code)[2].
  1. M. Tanaka, D. Kato, G. Gaigalas, K. Kawaguchi
    “Systematic opacity calculations for kilonovae”
    Monthly Notices of the Royal Astronomical Society 496 (2020) 1369-1392.
  2. A. Bar-Shalom, M. Klapisch, J. Oreg
    “HULLAC, an integrated computer package for atomic processes in plasmas”
    JQSRT 71 (2001) 169-188.
This database is developed by Atomic and Molecular Process Research Section of NIFS in collaboration with Masaomi Tanaka Laboratory of Astronomical Institute in Tohoku University and Computational Atomic Structure Group of Vilnius University. The work was supported by the NINS program for cross-disciplinary science study, the NINS program of Promoting Research by Networking among Institutions (Grant Number 01411702), the Japan Society for the Promotion of Science (JSPS) Bilateral Joint Research Project, and JSPS KAKENHI grant JP19H00694.

In your publications by using our database, please refer to the followings,
D. Kato, I. Murakami, M. Tanaka, S. Banerjee, G. Gaigalas, L. Radžiūtė, P. Rynkun, Japan-Lithuania Opacity Database for Kilonova (2021), http://dpc.nifs.ac.jp/DB/Opacity-Database/, (version #.#) and
M. Tanaka, D. Kato, G. Gaigalas, K. Kawaguchi, "Systematic opacity calculations for kilonovae", Monthly Notices of the Royal Astronomical Society 496 (2020) 1369-1392.

Please contact us by email:

Energy level and transition data

readme.txt (information about datafiles)
Download all data (about 600MB)
data available
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1st 1
H
2
He
2nd 3
Li
4
Be
5
B
6
C
7
N
8
O
9
F
10
Ne
3rd 11
Na
12
Mg
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
4th 19
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
5th 37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
6th 55
Cs
56
Ba
57-71
La-Lu
72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
7th 87
Fr
88
Ra
89-103
Ac-Lr
104
Rf
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
Ds
111
Rg
112
Cn
113
Nh
114
Fl
115
Mc
116
Lv
117
Ts
118
Og
        
Lanthanide 57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu
Actinide 89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr

Planck mean opacity for representative abundance distribution

readme.txt (information about density, temperature, time grids, )
Ye = 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40

Fig.1: Abundance distribution for diffrent Ye (Wanajo et al. 2014).

Fig.2: Density dependence of the Planck mean opacity for Ye = 0.25 and t = 1 day. The decline of the opacity at high temperature is due to lack of atomic data for highly ionized ion. This effect is significant for lower density because ionization becomes more efficient (see red curve).

Fig.3: Temperature and density dependence of the Planck mean opacity for Ye = 0.25 and t = 1 day.
go to Top
Version history 1.0: 2021/11/29
Copyright © 2021-2022 National Institute for Fusion Science. All Rights Reserved.