(PPC/AMB)

CROSS SECTIONS FOR CHARGE TRANSFER OF HYDROGEN BEAMS IN GASES AND VAPORS IN THE ENERGY RANGE 10 EV-10 KEV

HAVAMARA

INSTITUTE OF PLASMA PHYSICS NACOYA UNIVERSITY

NACOVA, JAPAN

This document is prepared as a preprint of compilation of atomic data for fusion research sponsored fully or purtly by the IPP/Nagosa University. This is intended for future publication in a journal or will be included in a data book after some evaluations or rearrangements of its contents. Extracts or references of this should not be published prior to publication of the original, withoritathe agreement of the authors.

IPPJ-AM-1

.

Cross sections for charge transfer of hydrogen beams in gases and vapors in the energy range 10 eV – 10 keV H. Tawara Nuclear Engineering Department, Kyushu University Fukuoka 812, Japan December 1977

.

Enquiries about copyright and reproduction should be addressed to the Research Information Center, IPP/Nagoya University, Nagoya, Japan.

Cross sections for charge transfer of hydrogen beams in gases and vapors in the energy range 10 eV - 10 keV

H. Tawara

Nuclear Engineering Department, Kyushu University Fukuoka 812, Japan

Introduction

It has been recognized that the charge transfer processes of hydrogen beams play an important role in plasma physics, radiation physics and astrophysics. In plasma physics, especially in fusion reactor experiment, the injection of neutral hydrogen beam is one of the most promising methods for effective trapping of the beam into toroidal plasma which is shaped with strong magnotic fields. These neutral beams are generally produced through the electron capture to proton beams. Similarily, the production of intense negative hydrogen ion beam is important because the injection of the negative ion beam is thought to be an alternative and effective method. Also che neutral particles escaping from the plasma contain some useful informations on the plasma and can be used for diagnosing characteristics of the plasma. For these purposes, data are prerequisite on the charge transfer of hydrogen beams especially at energies lower than a few keV. There are some reviews $^{1-6}$ on these charge transfer processes but their energy is generally limited down to a few keV from some tens Meanwhile, there are a number of measurements of the cross sections MeV. for the charge transfer at lower energies but there are no systematic compilation of data at lower energies.

In this paper, we compile in graphical forms experimental data on the

- 1 -

(up to June, 1976) charge transfer of hydrogen ion (proton, H^+), hydrogen atom (H°) and negative hydrogen ions (H^-) in various gases and vapors in the incident energy between 10 and 10,000 eV.

Some detail on the charge transfer processes has already been given in some references.^{1,6} Here only a short description is given. In hydrogen beams, the following charge transfer processes take place (B is target atom, B^+ and B^{2+} are slow target ions and e is slow electron): 1. H^+ impact

 $H^{+} + B \rightarrow H^{+} + B^{+} + e \qquad (\sigma_{11} \equiv \sigma_{1}^{i}) \qquad : \text{ pure ionization}$ $\rightarrow H^{\circ} + B^{+} \qquad (\sigma_{10}) \qquad : \text{ one-electron capture}$ $\rightarrow H^{-} + B^{2+} \qquad (\sigma_{1-1}) \qquad : \text{ two-electron capture}$

2. H impact

$\stackrel{\circ}{H} + B \rightarrow H + B^{+} + e$	$(\sigma_{00} \equiv \sigma_0^{i})$: pure ionization	
$\rightarrow H^+ + B + e$	(σ ₀₁)	: one-electron stripp	ing
\rightarrow H ⁻ + B ⁺	(σ ₀₋₁)	: one-electron captur	e

3. H impact

$$H^{-} + B \rightarrow H^{-} + B^{+} + e \qquad (\sigma_{-1-1} \equiv \sigma_{-1}^{1}) : \text{ pure ionization}$$

$$\rightarrow H^{+} + B + e \qquad (\sigma_{-10}) \qquad : \text{ one-electron stripping}$$

$$\rightarrow H^{+} + B + 2e \qquad (\sigma_{-11}) \qquad : \text{ two-electron stripping.}$$

Here σ_{ij} denotes the cross section for the charge transfer process from the initial charge state i to the final charge state j. σ_k^i means the ionization cross section for the incident ions with the charge state k. To determine the cross section for the charge transfer process, the following three methods are negerally used: the attenuation, the growth and the condenser methods. In the first two methods, only the fast beams are observed, neglecting the charge state of secondary

- 2 -

slow ions and electrons, meanwhile in the third method, the secondary slow ions and electrons are measured, neglecting the charge state of the incident projectiles after collision. Some times the equilibrium and retardation methods are also used⁶.

In Table 1 are summarized the cross sections which can be determined from various experimental methods for various incident ion beams. In some methods, for example in the attenuation and the condenser methods, the measured cross sections are not always those for a single process but those for the sum of two or more processes. However, in many collision processes, the cross sections for two electron transfer processes are small, compared with those for single electron transfer processes. In Fig.1 are shown the cross sections for charge transfer of hydrogen beams in H_2 gas over a wide range of the energy to give an idea of the sizes of the cross sections for various processes. In Tables 2-7 are given lists of experiments for various charge transfer processes which include the names of authors, energy range, target and measuring method. In a series of the figures are shown the cross sections for various charge transfer processes. The cross section is given in the unit of cm² per collision. The following are important when these data are used:

1. In some measurements using the condenser method, only slow electron or ion production cross sections (σ_{-} , σ_{+}) are determined. However, these cross sections are, in many cases, the sum of the ionization cross sections (σ^{i}) and the charge transfer cross sections. It is possible to estimate the cross section for the charge transfer processes from this measurement only in such processes that the ionization cross section is small, like in He target. In some collisions such as H° + Xe, the slow electron and ion production cross sections are nearly equal (1-25 keV). Therefore, it is not possible to determine the charge transfer

- 3 -

cross section without measuring both slow electrons and ions. For such data, σ_{-} or σ_{+} is shown to distinguish that from the pure charge transfer cross section. In such cases, σ_{-} or $_{+}$ should be taken as an upper limit of the charge transfer cross section σ_{01} or σ_{10} .

2. In most measurements, no detailed descriptions are given of the effect of scattering processes which becomes significantly important at energies lower than a few hundred eV. Due to the scattering loss of the incident beams or of beam charge-transferred in the collision the observed cross sections might be too high or too low, depending on the measuring geometry, as seen in the scattering of data at lower energies. In appendix, some descriptions on the scattering are given.

3. Some meaurements have shown that there is some finite difference (5 %) in the charge transfer cross sections between H and D beams at energies less than 200 eV. This is thought to be due to the difference in scattering cross sections. However, more systematic measurements should be done before finite conclusions on the difference are drawn from the observations.

4. To avoid complication, no error bars are shown in the figures. Usually most experimental data have uncertainty of 10 - 30 %, depending on experimental situations, though some have much larger errors.

Appendix - Scattering in Charge Transfer

Generally the most charge transfer processes take place in collisions with large impact parameters. Therefore, the scattering of the incident ions and of the charge-transferred ions is rather small. Experiments on such scatterings in the charge transfer processes are very limited.¹⁻⁷ From these limited experimental observations, some general trends on the scattering processes are deduced:

- 4 -

1. The scattering of ions in electron loss processes is comparatively large, meanwhile that in electron capture processes is relatively small.

2. The differential scattering cross sections for charge transfer processes decrease monotonically and rapidly with increasing the scattering angle. Therefore no structures in the angular distributions are usually observed, though there are some oscillations due to molecular curve crossings in some collisions like H^+ + Kr.

3. At a fixed energy, the width of the angular distribution does not vary significantly with target gases. Only the slight increase of the width is observed for heavy target atoms.

4. The width of the angular distribution decreases with increasing the incident energy, namely proportional to 1/E.

For H° impact, the product of the scattering angle θ and the incident beam energy E is nearly independent of the beam energy. For the half-cone-angle θ_{50} and θ_{75} , into which 50 % and 75 %, respectively, of the total stripped protons are scattered, for example, the following relations are observed:

 $E \cdot \theta_{50} \simeq 1$ keV. deg. $E \cdot \theta_{75} \simeq 4$ keV. deg.

Roughly speaking, these relations hold down to 100 eV. These are only approximate to give an impression to the scattering. Actually, the width of the scattering angles increases slightly at lower energies.

- 5 -

References for Tables and Figures

- v. V. Afrosimov, R. N. Ilin and N. V. Fedorenko, Soviet Phys.-Tech.
 Phys. <u>3</u>, 2080 (1958)
- V. V. Afrosimov, R. N. Ilin and E. A. Solovev, Soviet Phys.-Tech. Phys. 5, 661 (1960)
- T. L. Bailey, C. J. May and E. E. Muschlitz, J. chem. Phys. <u>26</u>, 1446 (1957)
- 4. R. A. Baragiola and E. R. Salvatelli, Nucl. Instr. Meth. 110, 503 (1973)
- 5. T. L. Bailey and P. Mahadevan, J. chem. Phys. 52, 179 (1970)
- 6. C. F. Barnett and J. A. Ray, Nucl. Fusion 12, 65 (1972)
- 7. M. Becker and A. Scharmann, Z. Naturforsch. 21a, 854 (1969)
- K. H. Berkner, R. V. Pyle and J. W. Stearns, Phys. Rev. <u>178</u>, 248 (1969)
- 9. K. H. Berkner, R. V. Pyle and J. W. Stearns, Nucl. Fusion <u>10</u>, 145 (1970)
- 10. Y. F. Bydin, Soviet Phys.-JETP 22, 762 (1966)
- 12. R. L. Champion, L. D. Doverspike and S. K. Lam, Phys. Rev. A<u>13</u>, 617 (1976)
- 13. M. A. Coplan and K. W. Ogilvie, J. chem. Phys. 52, 4154 (1970)
- 14. W. H. Cramer and J. H. Simons, J. chem. Phys. 26, 1272 (1957)
- 15. W. H. Cramer and A. B. Marcus, J. chem. Phys. 32, 186 (1960)
- 16. W. H. Cramer, J. chem. Phys. 35, 836 (1961)
- R. Curran, T. M. Donahue and W. H. Kasner, Phys. Rev. <u>114</u>, 490 (1959)
- 18. R. Curran and T. M. Donahue, Phys. Rev. 118, 1233 (1960)

- 19. R. Dagnac, D. Blanc and D. Molina, J. Phys. B3, 1239 (1970)
- 20. R. C. Dehmel, R. Merger, H. H. Fleischmann and M. Steinberg, J. chem. Phys. 58, 5111 (1973)
- 21. T. M. Donahue and F. Hushfar, Phys. Rev. 124, 138 (1961)
- 22. H. H. Fleishmann and R. A. Young, Phys. Letters 29A, 287 (1969)
- 23. H. H. Fleischmann and R. A. Young, Phys. Rev. 178, 254 (1969)
- 24. H. H. Fleischmann, C. F. Barnett and J. A. Ray, Phys. Rev. A<u>10</u>, 569 (1974)
- 25. I. M. Fogel and R. V. Mitin, Soviet Phys.-JETP 3, 334 (1956)
- 26. I. M. Fogel, V. A. Ankudinov and R. E. Slabospitskii, Soviet Phys. -JETP 5, 382 (1957)
- I. M. Fogel, V. A. Ankudinov, D. V. Pilipenko and N. V. Topolia, Soviet Phys.-JETP <u>34</u>, 400 (1958)
- 28. I. M. Fogel, R. V. Mitin, V. F. Kozlov and N. D. Romashko, Soviet Phys.-JETP 35, 390 (1959)
- 29. A. H. Futch and K. G. Morses, UCRL-70251 (1966)
- 30. H. B. Gilbody and J. B. Hasted, Proc. Roy. Soc. A238, 334 (1957)
- 31. Y. Gordeev and M. N. Panov, Soviet Phys.-Tech. Phys. 9. 656 (1964)
- 32. W. Gruebler, P. A. Schmelzbach, E. Konig and P. Marmier, Helv. Phys. Acta 43, 254 (1970)
- 33. E. Gustaffson and E. Lindholm, Arkiv Fysik 18, 219 (1960)
- 34. J. B. Hasted, Proc. Roy. Soc. A205, 421 (1951)
- 35. J. B. Hasted, Proc. Roy. Soc. A212, 235 (1952)
- 36. J. B. Hasted and R. A. Smith, Proc. Roy. Soc. <u>A235</u>, 349 (1956)
- 37. O. Hollricher, Z. Phys. 187, 41 (1965)
- 38. N. Inoue, Nucl. Fusion 12, 130 (1972)
- 39. D. W. Koopman, Phys. Rev. 154, 79 (1967)
- 40. D. W. Koopman, Phys. Rev. 166, 57 (1968)

- 41. D. W. Koopman, J. chem. Phys. 49, 5203 (1968)
- 42. V. F. Kozlov, Y. M. Fogel and V. A. Stratienko, Soviet Phys.-JETP <u>17</u>, 1226 (1963)
- 43. T. E. Leslie, K. P. Sarver and L. W. Anderson, Phys. Rev. <u>A4</u>, 408 (1971)
- 44. W. B. Maier II, Phys. Rev. A5, 1256 (1972)
- 45. G. W. McClure, Phys. Rev. 132, A1636 (1963)
- 46. G. W. McClure, Phys. Rev. 134, A1226 (1964)
- 47. G. W. McClure, Phys. Rev. 148, 47 (1966)
- 48. G. W. McClure, Phys. Rev. 166, 22(1968)
- 49. R. J. McNeal and D. C. Clark, J. Geophys. Res. 74, 5065 (1969)
- 50. R. J. McNeal, D. C. Clark and R. A. Klingberg, Phys. Rev. <u>A2</u>, 131 (1970)
- 51. R. J. McNeal, J. chem. Phys, 53, 4308 (1970)
- 52. G. Monnom, M. Eliot, J. Guidi and F. P. G. Valcks, Comp. Rend. Acad. Sci. B 281, 425 (1975)
- 53. E. E. Muschlitz, T. L. Bailey and J. H. Simons, J. chem. Phys.24, 1202 (1956). Some data are revised in the following paper(5).
- 54. E. E. Mushchlitz. T. L. Bailey and J. H. Simons, J. chem. Phys. <u>26</u>, 711 (1957)
- 55. N. Noda, J. Phys. Soc. Japan (1976) to be published
- 56. R. E. Olason, Phys. Letters 55A, 83 (1975)
- 57. R. E. Olson, IEEE NS-23, 971 (1976)
- 58. D. V. Pilipenko and Y. M. Fogel, Soviet Phys.-JETP 15, 646 (1962)
- 59. D. V. Pilipenko and Y. M. Fogel, Soviet Phys.-JETP 17, 1222 (1963)
- 60. D. V. Pilipenko, V. A. Gusev and Y. M. Fogel, Soviet Phys.-JETP 22, 965 (1966)
- 61. P. Pradel and F. Roussel, Nucl. Instr. Meth. 121, 111 (1974)

- P. Pradel, F. Roussel, A. S. Schlachter, G. Spiess and V. Valance, Phys. Rev. A 10, 797 (1974)
- 63. J. S. Risley and R. Geballe, Phys. Rev. A9, 2485 (1974)
- 64. J. S. Risley, Phys. Rev. A10, 731 (1974)
- 65. E. R. Salvatelli, G. Lantschner and W. Meckbach, J. Phys. B 2_. 772 (1969)
- 66. F. Schwirzke, Z. Phys. 157, 510 (1960)
- 67. A. S. Schlachter, P. J. Bjorkholm, D. H. Loyd, L. W. Anderson and
 W. Haeberli, Phys. Rev. <u>177</u>, 184 (1969)
- 68. F. R. Simpson and H. B. Gilbody, J. Phys. B5, 1959 (1972)
- 69. W. S. Snow, R. D. Rundel and R. Geballe, Phys. Reg. 178, 228 (1969)
- 70. G. Spiess, A. Valance and P. Pradel, Phys. Letters 31A, 434 (1970)
- 71. G. Spiess, A. Valance and P. Pradel, Phys. Rev. A6, 746 (1972)
- 72. R. F. Stebbings, A. C. H. Smith and H. Ehrhardt, J. Geophys. Res. 69, 2349 (1964)
- 73. J. B. H. Stedeford and J. B. Hasted, Proc. Roy. Soc. A227, 466 (1955)
- 74. P. M. Stier and C. F. Barnett, Phys. Rev. 103, 896 (1956)
- 75. G. C. Tisone and L. M. Branscomb, Bull. Am. Phys. Soc. 9, 535 (1964)
- 76. G. C. Tisone and L. M. Branscomb, JILA report no.20, (1904)
- 77. V. N. Tuan, G. Gautherin and A. S. Schlachter, Phys. Rev. A<u>9</u>, 1242 (1974)
- 78. V. N. Tuan, A. S. Schlachter and G. Gautherin, Nucl. Instr. Meth. 114, 499 (1974)
- 79. A. C. Whittier, Can. J. Phys. <u>32</u>, 275 (1954)
- 80. J. F. Williams and D. N. F. Dunbar, Phys. Rev. 149, 62 (1966)
- 81. J. F. Williams, Phys. Rev. 150, 7 (1966)
- 82. J. F. Williams, Phys. Rev. 153, 116 (1967)
- 83. J. F. Williams, Phys. Rev. 154, 9 (1967)

References for Introduction

- 1. S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958)
- 2. H. D. Betz, Rev. Mod. Phys. <u>44</u>, 465 (1972)
- 3. R. C. Dehmel, H. K. Chau and H. H. Fleishmann, Atomic Data 5, 231 (1973)
- 4. H. H. Lo and W. L. Fite, Atomic Data 1, 305 (1970)
- 5. V. S. Nikolaev, Soviet Phys.-Usp. 8, 269 (1965)
- 6. H. Tawara and A. Russek, Rev. Mod. Phys. <u>45</u>, 179 (1973)

References for Appendix

•

, **\.**

. . . .

- 1. C. F. Barnett and J. A. Ray, Nucl. Fusion 12, 65 (1972)
- 2. R. L. Fitzwelson and E. W. Thomas, Phys. Rev. A 6, 1054 (1972)
- 3. H. H. Fleishmann and R. A. Young, Phys. Rev. Letters 19, 941 (1967)
- 4. H. H. Fleishmann, R. A. Young and J. W. McGowan, Phys. Rev. <u>153</u>, 10 (1967)
- 5. H. H. Fleishmann, C. F. Barnett and J. A. Ray, Phys. Rev. A <u>10</u>, 569 (1974)
- 6. I. Sauers and E. W. Thomas, Phys. Rev. A 10, 822 (1974)

.

• • • •

 E. W. Thomas, L. A. Leatherwood and J. E. Harris, Phys. Rev. A <u>12</u>, 1835 (1975)

· · · ·

. . , . .

• .

·: .

Table 1 The cross sections obtainable from various experimental methods

experimental	inc	ident particle	
method	H⁺	HO	H
Growth	^σ 10 , ^σ 1-1	^σ 01 , ^σ 0-1	σ-10 , σ-11
Attenuation	σ ₁₀ + σ ₁₋₁	σ ₀₁ + σ ₀₋₁	σ ₋₁₀ + σ ₋₁₁
Condenser slow ion slow electron total charge	$\sigma_{1}^{i} + \sigma_{10} + 2 \sigma_{1-}$ σ_{1}^{i} $\sigma_{10} + 2 \sigma_{1-1}$	$1 \sigma_{0}^{i} + \sigma_{0-1} \\ \sigma_{0}^{i} + \sigma_{01} \\ \sigma_{01}^{-\sigma} 0 - 1$	σ_{-1}^{i} σ_{-1}^{i} $\sigma_{-10}^{+2\cdot\sigma}$ -11 $\sigma_{-10}^{+2\sigma}$ -11

...

:

-

,

A list of measurements of σ_{10}

authors	year	energy range	target	method :	reference
Hasted	1951	10-800	Ar,Kr,Xe	C	3 4
Hasted Whittier Stedeford,Hasted	1952 1954 1955	100-1.000 4.000-70.000 100-40.000	Ar H ₂ H ₂ ,He,Ne,Ar, Kr,Xe	C A C	35 79 73
Stier,Barnett	1956	3.000-200.000	H ₂ ,He,N ₂ ,Ō ₂ , Ne.Ar	G+E	74
Gilbody,Hasted	1957	10-40.000	N ₂ ,CO,NH ₃	С	30
Curran <u>et</u> <u>al</u> .	1959	2.400-60.000	H ₂	С	17
Gustaffson, Lindholm	1960	25-900	H ₂ ,N ₂ ,CO	MS	33
Cramer, Marcus	1960	4-400	D ₂ (D ⁺)	C	15
Cramer	1961	50-400	н2	С	16
Stebbings <u>e</u> t <u>al</u> .	1964	40-10.000	0 ₂ ,0	С	72
Gordeev,Panov	1964	1.000-40.000	H ₂ ,N ₂ ,Ar	С	31
Hollricher	1965	1.500-30.000	H ₂ ,D ₂	С	37
McClure	1966	2.000-117.000	H ₂ ,H	G	47
Williams	1966	2.000-50.000	H ₂ ,He,Ne,Ar, Kr,Xe	G	80
Koopman	1967	70-1050	H ₂ ,Ar,Kr,Xe	С	39
Cable	1967	180-460	н ₂ 0	С	11
Futch, Moses	1967	4.000-50.000	Mg	G	29
Koopman	1968	40-1.500	N ₂ ,0 ₂ ,CO ₂ ,H ₂ O	С	40
Koopman	1968	100-1.500	CH4, NH3	С	41
McNeal, Clark	1969	1.000-25.000	N ₂	С(σ ₋₁ , о	·_) 49
Becker, Scharman	1969	1.500-30.000	He-3,He-4	С	7
Schlachter <u>et al</u> .	1969	500-20.000	Cs .	G	67

.

Berkner <u>et al</u> .	1969	5.000-70.00	0 Mg	Ģ	κ ε 3	8
Dagnac <u>et al</u> .	1970	2.000-60.00	$0^{f} H_2^{10}$	инот (с. 1.) С	G+E	19
Coplan, Ogilvie	1970	30-500	³²⁰⁶ H ₂ 0,CO ₂ ,N	VH C	DC	1- 13 -1
Berkner <u>et al</u> . ^D	1970 <u>.</u> 0	ጟ፞፟፟፟፟፟፞00^ኯ፟ታ0.^ֈb00 እፍ. እד	000. Co, CH ₄ , H ₂	o) ا ۲۵ و	. <u>16</u> <u>1</u> 6	યું નિ લ્ યુંલ્વે
Gruebler <u>et al</u> .	1970	94, 94, 14 1.000-20.000	С8 ^F 16 000.07-006.7 D Li,Na,K,C	vaer Cs G	. Le Je	9 Iouo3 32
Spiess $\underline{et} \underline{al}$.	1970	2.500 TA ()	Cs 00.081-000-5	0.000 1.960	Lovet al.	70
McNeal S	1970	1.000-25.00	0 CO,CO,NH	H 3, 0	ζ(σ, σ) σ(¹ α] - σ)	51 20[~0]
C 45		.,H	CH 000-07- 4 (0) -0	1963		annDob
Spiess <u>et al</u> .	1972	500-3.000	Cs 000.00 000.00	G	3	71 nr. 1 1 - 4
Inoue	1972	150-8.000	К	G	3	38
Maier	1972	0.5-100	566 (Kr.)(Xe ;	тафі М	1S viseo)	4-1 <mark>44</mark> . ;
Baraĝiola, ;) Salvatelli	1973	7.500-40.000	O ∼G(₽₽)⊊ ())∂	961 . <mark>9</mark>	le porcore	for.:4(2
$\frac{1}{1000} \text{ et al.}$	ين 1975	.Э.сй. і.і 100-2.500	000.01.000.1 N ₂ ,Ne,Ar	07 <u>0</u> 1 G	et al.	of (1997.) 52
(*)		,)	More 1	1)" (23	. IF 15	5010 5

Notes: A: Attenuation method, C: Condenser method, G: Growth method, E: Equilibrium method, MS: Mass-separation method, DC: Differential cross section measurement, R: Retardation method. σ_{-} : Cross section of electron production, σ_{+} : Cross section of slow ion production.

The energy is given in the unit of eV.

.

Table 3					· · ، م
A list of me	asurem	ents of σ_{1-1}	- :	,	. , .
authors	year	energy range	Target	method	reference
Fogel <u>et al</u> .	1956	9.500-29.000	H ₂ ,He,N ₂ O ₂ , Ne,Ar	, G .	, 25 . , .
Fogel <u>et</u> <u>al</u> .	1959	5.000-50.000	H ₂ ,He,Ne,Ar, Kr,Xe	G	28
Afrosimov <u>et al</u> .	1960	5.000-180.000	Ar	G	2
Kozlov <u>et al</u> .	1963	500-5.000	H ₂ ,Ar,Kr	R	42
McClure	1963	6.000-50.000	H ₂	G	45
Williams	1966	2.000-50.000	H ₂ ,He,Ne,Ar, Kr,Xe	G	81
Futch-Moses	1967	4.000-50.000	Mg	G	29
Schlachter <u>et al</u> .	1969	500-20.000	Cs	G	67
Gruebler <u>et</u> al.	1970	1.000-20.000	Li,Na,K,Cs	G	32
Spiess <u>et al</u> .	1970	2.500	Cs	G	70
Baragiola, Salvatelli	1973	7.500-40.000	Pb	G	4

· · · ·

, (

.

•

.

A list of m	leasure	ments of ^σ 01			
anthors,	year	energy range	target	method r	reference
Stier,Barnett	1956 ₍	3.000-200.000	H ₂ ,He,N ₂ ,O ₂ , Ne,Ar	G+E	74
Fogel <u>et al</u> .	1958	5.000-40.000	H ₂ ,He,N ₂ ,O ₂ , Ne,Ar,Kr,Xe	G	27
Curran,Donahue	1960	4.000-35.000	^H 2	C+A	18
Donahue,Hushfar	1961	8.000-40.000	Ar,CO	C+A	22
Pilipenko,Fogel	1962	5.000-20.000	H ₂ ,N ₂ ,O ₂ ,CO	G	58
Pilipenko,Fogel	1963	5.000-30.000	NO	G	59
Williams	1967	2.000-50.000	H ₂ ,He,Ne,Ar,Kr, Xe	G	82
Futch,Moses	1967	4.000-50.000	Mg	G	29
McClure	1968	1.250-117.000	H ₂	G	48 ·
Schlachter <u>et al</u> .	1969	500-20.000	Cs	G	67
Berkner <u>et</u> al.	1969	5.000-70.000	Mg	G	8
Fleishmann,Young	1969	50-1.000	H ₂ ,He,Ne,Ar	C(σ_)	23
Fleishmann,Young	1969	50-800	N ₂ ,0 ₂	C(σ_)	22
McNeal,Clark	1969	1.000-25.000	N ₂	C(σ_, σ ₊)	49
McNeal <u>et al</u> .	1970	1.000-25.000	H ₂ ,He,O ₂ ,Ne, Ar,Kr,Xe	C(σ_,σ ₊)	50
McNeal	1970	1.000-25.000	^{CO,Co} 2,CH ₄ ,NH ₃	C(σ_,σ ₊)	51
Dagnac <u>et al</u> .	1970	2.000-60.000	н ₂ 0	G+E	19
Barnett, Ray	1972	300-10.000	^H 2, ^N 2	G	6
Baragiola, Salvatelli	1973	7.500-40.000	РЪ	G	4.
Dehmel <u>et al</u> .	1973	80-2.000	Ar,Kr,Xe,CO, CO ₂ ,CH ₄	C(σ_)	20
Pradel <u>et al</u> .	1974	500-3.000	HI	G	61
Monnom <u>et al</u> .	1975	100-2.500	N ₂ ,Ne,Ar	G+E	
Noda	1976	200-5.000	^H 2, ^N 2	G	55

.

.

5

•

thod reference	met	ige targets	years energy r	authors
G+E ^{t വ} ാന്നട& _{7,4} ലം പ	0 <mark>0201</mark>	000 ¹¹¹ . ¹¹² ,He,N ₂ ,	1956 `3.000-20 TA.ov	Stier,Barnett
C 19 19 18 1	8561	Ne,Ar 000.01-000-2 000 H ₂	1960 4.000-35	D Curran ,Donahue
Cdano(1,22mb	0.501	ن ۵ ۵۵، ۸۳. ۵۵ ۵ (۵۰	1961 8.000-40	Donahue,Hushfa $\dot{\mathbf{r}}^{(+)}$
G rotherin 5860 -	CQ ⊙v∃ [ر _{َيْحَ} , کو Nu) و He He Nu) و O	1962 5.000-50	Pilipenko,Fogel 🗥
G	[+++ [000.000.NO. Gen. 3	1963 / 5000-35	Pilipenko,Fogel 🔿
G Garan And Gran	5 1 - 1	0000.Hz = 000.z	1964 6.000-12	AcClure
G82	Ar _e		•1967/ •27000-50	Villiams 🤅
G 672 101	- 121) 000 (GS-000 +	1969 500-20.0	Schlachter et al.
G (1810)	8954	150 117.00000	1969 5.000-70	Berkner et al.
Grado to the 70 the	1969	0.00 n° -002 Cs	1970 2.500	Spiess et al.
G (+ 10 (*44)(*)	Copp	000 Pb	1973 7.500-40	Baragiola,
Elershmann Young	0.001	000.1-02	nr.,sk.,sh., it	Salvatelli ,
 Даво∠, насал4_1 о [4	1961	HI _{GGR (G}	1974 500-3.00	Pradel <u>et al.</u>
ATELD, IN A M	2061	996.72-090	7	94 (j. 17. j.). 10
the type a work	0261	2.60.742-909.4	. 12. (1.)H. (1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ac (
: 69%oB	0-61	1.009 25.009	EIN, 10, (0), (0)	(; (; ; ;))
Ju to Frank	0261	606.00-060.2	0,11	(***)
Barrett. 10/18	1972	300-10.000	et est	<i>a</i> ;)
Barogrens S. Lettelli	5-61	- 500 11 000	(11) (11)	1
.14. to Louriou	1973	80-1.(00)	.00.97,93,92 	174 y 20
16 25 6 16.17	1-61	0 90 7 -043		! a)
Monnom et al.	1975	100-2.500	34.9A., A	(())
врои	1976	200 5,200	c/ .H	6 55

.

A list of measurements of σ_{-10}

•

authors	year	energy range	target	method	reference
Hasted	1952	100-2.500	He,Ne,Ar,Kr,	С	35
Whittier Stedeford-Hasted	1954 1955	4.000-70.000 100-40.000	Xe H He,Ne,Ar,Kr, Xe	A C	79 73
Hasted,Smith	1956	10-2.700	H ₂	Ċ	36
Stier,Barnett	1956	4.000-300.000	H ₂ ,He,N ₂ ,O ₂ , Ne,Ar	G	74
Muschlitz <u>et</u> <u>al</u> .	1956	4-400	^H 2	С	53
Muschlitz <u>et al</u> .	1957	4-400	н2	С	54
Bailey <u>et</u> <u>al</u> .	1957	5-350	He,Ne,Ar	С	3
Pilipenko	1966	3.000-30.000	0 ₂ ,N0,C0	С	60
Bydin	1966	200-7.000	He,Ne,Ar,Kr,X	e C	10
Williams	1967	2.000-50.000	H ₂ ,He,Ne,Ar,K Xe	r, G	83
Berkner <u>et al</u> .	1969	5.000-70.000	Mg	G	8
Spiess <u>et al</u> .	[`] 1970	2.500	Cs	G	70
Bailey <u>et</u> <u>al</u> .	1970	10-350	0 ₂	С	5
Leslie <u>et al</u> .	1971	2.000-30.000	Cs	G	43
Gilbody, Gilbody	1972	4.000-30.000	H ₂ ,He,Ar	A	68
Risley,Geballe	1974	200-10.000	H ₂ ,He,N ₂ ,O ₂ ,A	r A	63
Risley	1974	200-10.000	H ₂ ,He,N ₂ ,O ₂ ,A	r A	64
Champion <u>et</u> al.	1976	2-100	He,N ₂ ,Ne,Ar	С	. 12

÷ -

```
Table 7
```

A list of measurements of σ_{-11}

.

authors	year	energy range	target	method	reference
Fogel <u>et</u> <u>al</u> .	1957	5.000-40.000	H ₂ ,He,N ₂ ,O ₂ , Ne,Ar,Kr,Xe	G	26
Tisone <u>et al</u> .	1965	500-4.000	H ₂	G	75,76
Williams	1967	2.000-50.000	H ₂ ,He,Ne,Ar	G	83
Leslie <u>et al</u> .	1971	2.000-30.000	Cs	G	43

.

•

Fig. 1 Charge transfer cross sections of hydrogen beams in H_2 in a vide range of the energy showing the sizes of the cross sections for various processes.

Fig. 2 Cross sections for one-electron capture of $\mathsf{H}^{\!+}$ beams in H_2

Fig. 3 Cross sections for one-electron capture of $H^{\scriptscriptstyle +}$ beams in He

Fig. 4 Cross sections for one-electron capture of $\mathsf{H}^{\!\!+}$ beams in N_2

ĺ

í

Fig. 5 Cross sections for one-electron capture of $H^{\!+}$ beams in O_2

Fig. 6 Cross sections for one-electron capture of H⁺ beams in Ne

Fig. 7 Cross sections for one-electron capture of H^{\star} beams in Ar

Fig. 8 Cross sections for one-electron capture of H⁺ beams in Kr

Fig. 9 Cross sections for one-electron capture of $\mathsf{H}^{\!+}$ beams in Xe

,

Fig. 10 Cross sections for one-electron capture of H⁺ beams in CH₂

Fig. 11 Cross sections for one-electron capture of H^* beams in NH_3

Fig. 12 Cross sections for one-electron capture of H^+ beams in H_2O

Fig. 13 Cross sections for one-electron capture of H^+ beams in CO

.

Fig. 14 Cross sections for one-electron capture of H^+ beams in CO_2

Fig. 15 Cross sections for one-electron capture of H^+ beams in C_8H_{10}

Fig. 16 Cross sections for one-electron capture of H^{\star} beams in Li

Fig. 17 Cross sections for one-electron capture of H^+ beams in Na

Fig. 18 Cross sections for one-electron capture of H^{\star} beams in Mg

Fig. 19 Cross sections for one-electron capture of $H^{\scriptscriptstyle +}$ beams in K

Fig. 20 Cross sections for one-electron capture of H^+ beams in Cs

Fig. 21 Cross sections for one-electron capture of H^+ beams in Rb

Fig. 22 Cross sections for one-electron capture of H^+ beams in Pb

Fig. 23 Cross sections for two-electron capture of H^+ beams in H_2

Energy (E_{lab}-keV)

Fig. 24 Cross sections for two-electron capture of $H^{\scriptscriptstyle +}$ beams in He

Fig. 25 Cross sections for two-electron capture of $H^{\scriptscriptstyle +}$ beams in $N_{\scriptscriptstyle 2}$

Fig. 26 Cross sections for two-electron capture of $H^{\scriptscriptstyle +}$ beams in O_2

Fig. 27 Cross sections for two-electron capture of $H^{\scriptscriptstyle +}$ beams in Ne

Fig. 28 Cross sections for two-electron capture of H^{\star} beams in Ar

Fig. 29 Cross sections for two-electron capture of $H^{\rm +}$ beams in Kr

rid or Eig: 30 Gross sections for two-electron capture of H⁺ beams in Li

Fig. 32 Cross sections for two-electron capture of $H^{\scriptscriptstyle +}$ beams in Na

Fig. 33 Cross sections for two-electron capture of $\rm H^{+}$ beams in Mg

Fig. 34 Cross sections for two-electron capture of H^+ beams in K

Fig. 35 Cross sections for two-electron capture of H⁺ beams in Cs

Fig. 36 Cross sections for two-electron capture of H^{\star} beams in Pb

۰

Fig. 37 Cross sections for one-electron loss of H^0 beams in H_2

Fig. 38 Cross sections for one-electron loss of H^0 beams in He

Fig. 39 Cross sections for one-electron loss of H^0 beams in N_2

Fig. 40 Cross sections for one-electron loss of H^0 beams in O_2 .

Fig. 41 Cross sections for one-electron loss of H° beams in Ne

Fig. 42 Cross sections for one-electron loss of H⁰ beams in Ar

Fig. 43 Cross sections for one-electron loss of H⁰ beams in Kr

Fig. 44 Cross sections for one-electron loss of H⁰ beams in Xe

Fig. 45 Cross sections for one-electron loss of H^0 beams in CH_4

Fig. 46 Cross sections for one-electron loss of $H^{\rm o}$ beams in NH_3

Fig. 47 Cross sections for one-electron loss of H° beams in H_2O

Fig. 48 Cross sections for one-electron loss of $H^{\rm 0}$ beams in CO

Fig. 49 Cross sections for one-electron loss of H^0 beams in NO

Fig. 50 Cross sections for one-electron loss of H^0 beams in CO_2

Fig. 51 Cross sections for one-electron loss of H^o beams in HI

Fig. 52 Cross sections for one-electron loss of H^o beams in Mg

Fig. 53 Cross sections for one-electron loss of H^0 beams in Cs

Fig. 54 Cross sections for one-electron loss of H^o beams in Pb

Fig. 55 Cross sections for one-electron capture of H^0 beams in H_2

.

Fig. 56 Cross sections for one-electron capture of H^0 beams in He

Fig. 57 Cross sections for one-electron capture of H^0 beams in N_2

Fig. 58 Cross sections for one-electron capture of H^0 beams in O_2

Fig. 59 Cross sections for one-electron capture of H^0 beams in Ne

Fig. 60 Cross sections for one-electron capture of H^o beams in Ar

Fig. 61 Cross sections for one-electron capture of H^o beams in Kr

.

Fig. 62 Cross sections for one-electron capture of H^0 beams in Xe

Fig. 63 Cross sections for one-electron capture of H^0 beams in CO

Fig. 64 Cross sections for one-electron capture of H^o beams in NO

Fig. 65 Cross sections for one-electron capture of H^o beams in HI

Fig. 66 Cross sections for one-electron capture of H° beams in Mg

Fig. 67 Cross sections for one-electron capture of H⁰ beams in Cs

Fig. 68 Cross sections for one-electron capture of H^0 beams in Pb

Fig. 69 Cross sections for one-electron loss of H^- beams in H_2

Fig. 70 Cross sections for one-electron loss of H⁻ beams in He

Fig. 71 Cross sections for one-electron loss of H⁻ beams in N₂

Fig. 72 Cross sections for one-electron loss of H^- beams in O_2

Fig. 73 Cross sections for one-electron loss of H⁻ beams in Ne

Fig. 74 Cross sections for one-electron loss of H⁻ beams in Ar

Fig. 75 Cross sections for one-electron loss of H^- beams in Kr

Fig. 76 Cross sections for one-electron loss of H^- beams in Xe

Fig. 77 Cross sections for one-electron loss of H⁻ beams in CO

Fig. 78 Cross sections for one-electron loss of $H^{\rm -}$ beams in NO

Fig. 79 Cross sections for one-electron loss of H^- beams in Mg

Fig. 80 Cross sections for one-electron loss of H^- beams in Cs

Fig. 81 Cross sections for two-electron loss of $H^{\scriptscriptstyle -}$ beams in H_2

Fig. 82 Cross sections for two-electron loss of H^- beams in He

٠

Fig. 83 Cross sections for two-electron loss of $H^{\text{-}}$ beams in N_{z}

Fig. 84 Cross sections for two-electron loss of H^- beams in $O_{\rm 2}$

Fig. 85 Cross sections for two-electron loss of H^- beams in Ne

Fig. 86 Cross sections for two-electron loss of H⁻ beams in Ar

Fig. 87 Cross sections for two-electron loss of H⁻ beams in Kr

۴

Fig. 88 Cross sections for two-electron loss of H⁻ beams in Xe

Fig. 89 Cross sections for two-electron loss of H⁻ beams in Cs

•