


8
8

. prepare




IPPJ—AM—2

IONIZATION AND EXCITATION OF IONS BY ELECTRON IMPACT
— REVIEW OF EMPIRICAL FORMULAE —

T. Kato

Department of Physics, Nagoya University.

June 1977

Enquiries about copyright and reproduction should be addressed to the
Research Information Center, IPP/Nagoya University, Nagoya, Japan.




Ionization and Excitation of Ions by Electron Impact

-Review of empirical formulae-

Takako KATO

Department of Physics, Nagoya University

We review here the empirical formulae for ionization and
excitation by electron impact, especially for highly-ionized
ions. The reliability and applicability of various empirical

formulae are discussed.

A. Excitation

The excitation cross sections for ions have not been
investigated so much on either theoretical or experimental
side, but it is often necessary to know cross sections for
plasma diagnostics and for astrophysics. So it is convenient
to find a empirical formula in order to calculate cross
sections easily.

In order to calculate line intensities from a hot plasma,
we have to know the cross section for excitation. When the
excitation from levels other than ground state and the
cascade effect are neglected, the intensity Pji of transition

from level j to i is expressed as

.= ..h
Pyj = NgNeag Dyshv, (1)

where ug. is the rate coefficient of collisional excitation

from ground state to excited level j, D.. = A../ T A., the
ji Jj1 %< j2



branching ratio, Ng the density of the ion, Ne the electron
density and Aji is the spontaneous radiative transition

probability. agj can be obtained by integrating the cross

section o over a Maxwellian distribution,

= f dv. 2
agj J (v)ovdv (2)
The collision strength are defined by Q = kgwio, where o the

g, ki the energy of the incident

electron in redbergs associated with level i, ws is the

cross section in unit of 7wa

statistical weight of level i. As the collision strength Q
is a slowly varying function of energy, taking the averaged

collision strength Q@

_ 8.63x107°

“g

. =1/2 0., . 3. -1
gj QT ( h)exp(—Egi/kT)cm sec -, (3)

where wg is the statistical weight for the ground state, T is

the electron temperature, and Egj is the excitation emnergy.

1. Approximation Method

We survey here the approximation methods in a simple
way. More detailed reviews are found in Bely and Van

Regemorter (1970).

(a) Quantum theory

The total wavefunction ¥ is expanded in terms of the
multiple of unperturbed atomic eigenfunction ¢n(Y1"'Y2)

and .of the wavefunction Xn(y) of incident electron, like

PO ygs ) = ARG (yyem ey )Xy () (4)



It is necessary to make a partial-wave analysis in which the
differential equations are solved for each value of the
total angular momentum and of the total spin in order to
make accurate calculations. This type of analysis requires

a long time of computation.

(a-1) The close-coupling approximation

This is the approximation assumed only a finite number
of state in the expansion (4). Then one has to solve a
finite set of coupled integrodifferential equaticns using

numerical techaniques.

(a-2) Born approximation

When the incident energy is large compared with the
interaction energy, the wavefunction may be approximated by

a plane wave and the cross section is proportional to
+ 2
|<¥ vy >, (5)

¥, = ¢nFn and Yoo = ¢n'Fn' , Where F, and Fn' are plane

waves. Born approximation is valid for high incident
energies. For collision with positive ions, Fn and Fn'

should be taken as Coulomb waves. This is called the Coulomb-
Born approximation. Born approximation which takes into
account the distortion of thg wavefunction by the static
atomic field is called the distorted-wave Born approximation.
There are several other improved Born approximation (for
example see Bely and Van Regemorter (1970)).

Vainshtain and Sobelman (1968) made calculations for



the cross sections of neutral atoms and listed their results
in Tables. They introduced a approximate analytical expres-

sions for, the cross section,

E
o = mal(R¥y%(Ly3/2 Q (6)

ij E, (22 *+1) (w+¢)

where Eij: threshold energh,

Eo : ionization potential for the initial state,

El : ionization potential for the final state,

%o the electron angular momentum of the initial
state,

Q : depends on the transition (the orbital angular
momentum of an electrons % and the total orbital
angular momentum L), the expression of Q for each
transition is given in the text (Q = the number
of electrons),

E : incident energy,

W g—;—fii

Eij

The rate coefficient is

o = 10'8(_1_{_}'__._E_:1_)3/2e'y Q A‘/?(Y"'l) , (7)

Eij E0 2£0+1 y+x

where y = Eij/KT. The values of c, ¢, X, Q and A are given
in Table. This approximation is used by Beigman, Vainshtain
and Vinogradov (1970). For the intercombination transition

(as # 0), the approximation is not good because they used



the Ochkur (1963)'s method which is not so reliable in the

case of spin exchange transitions.

(a-3) Glauber approximation

This is the method for the scattering on a target which
consists of many body, and the dynamics of a many body system
is considered.

Good results are obtained for the atomic scattering
(for example Narumi and Tsuji (1975)). For low energies,

smaller values are obtained than by Born approximation.

(a-4) Bethe approximation

At high energies, the distant encounters are important
and the colliding electron remains outside the atom most of
the time. Bethe asymptotic formula for optically allowed
transitions is expressed simply using the absorption oscil-

lator strength

2 1

fij u 2n (bu),

_ 2
where u = E/Eij and IH is the hydrogen ionization energy
(13.6 eV). Seaton (1962a) introduced the effective Gaunt
factor g(u) and gave the following formula
Iy

I
_2m,, .2, H,2 -1 - 2 -
g = — 4'7Tao(£—.') flj gCU.) u 1.28x%10 ') fij g(u) u

ij EiJ

1

15(

(8)

This is sometimes called the g empirical formula.



(b) Semiclassical theory

(b-1) Impact-parameter method

Seaton (1962b) introduced the semiclassical impact-
parameter method for atom-electron collisions, and the results
are much better than Born approximation at low energies. The
results should be reliable to within 50 % for strong allowed
transitions from the ground state or between n - n + 1 levels.
This method requires a knowledge of the oscillator strength
£. If the cnlliding electron remains outside the target, the
dipole approximation is Vélid, and this gives the same

expression as Bethe formula.

II. g empirical formula by Bethe approximation

This approximation is often used as it is simple and
practical. There are several methods depending on the form
of the gaunt factor g(u) in eq.(8), and typical examples
which are currently used are discussed. We use the same

notation as in the section before; u = E/Ei and y = Eij/kT

j

(1) Post (1961)

For the case of high velocity impacts, he assumed
g(u) * 2n u, (9)
and the rate coefficiert is

-6

4.4x10 3 -1
a = —47————— f..h(y) cm"sec —, (10)
TZ 2(ev) 1J

where



sEl(Y) © oz
h(y) = ——— B ) = | S d
y y z
Y = By;/kT e = 2.7183

and Te is the electron temperature in eV.

(2) Van Regemorter (1962), Allen (1973)

This formula has been used often in astrophysics.

I
o =1.28 x 107> L Hy2e o g (11)
E.

1)

1]
g is a function of x = /E7E;; and its values are given in
Table. g can be taken to be a constant ~ 0.2 at low energies
for positive ions. But from the recent results of Coulomb-
Born I and II methods, g is generally larger than 0.2 for the
transition of the same principal quantum numbers (n = n')
and smaller than 0.2 when n ¥ n'. This expression of g has
been improved by Mewe (1972) as will be discussed later.

The rate coefficient is

3

a = 1.70x10 °f.. T‘1/2(°K) E;%(ev)e'yP(Y) (12)

1]
The values of

2

P(y) = j ) e " ayx?),

o

are given in Table.



(3) Drawin (1966)

0.083 u for 1 < u < 3.85
0.275x(u-1) o (1.25 u) for u > 3.85
u
and
3/2
_s.6ox108 .. £.. 231 v (14)
o y ij- 15 “eff T "2 Y
where
3.85y _ o _
v, (y) = 2:302 j z e %dz + [ [(1-De %n(1.25-2)]dz (15)
y y 3.85y y
Bjj = 0.8 ~ 1.2

y; = 1.58 x 10° 2%/T(°K)

The values of wz(y) are given in Table in the text and Zeff

is the effective charge Zeff =7 -N *t1

(4) Mewe (1972)

He assumed

1

g(u) = A + Bu ~ + cu~?

+ D 2n u. (16)

D is taken to be ¢3/2 according to the Bethe limit in the

case u >> 1.

o = 1.70x1073 771/ 2 (o) Ei} £5; PO) e (17)

and



P(y) = y e jlgcu) e Vldu
_ 2 y ‘
= A+ (By - Cy” + D) e’ E;(y) + Cy,

where

0, -Z
E, (y) = [ £ dz
y Z

It can be written within 3.5 % accuracy:

e E,(y) = 2n(y+1) 0.1 >
y (y+1)

Mewe got the values of coefficients A, B, C, D, for
several transitions of H-, He-, Li- and Ne- like ions by
fitting the theoretical and experimental results available.

We listed them in Table I. For all other sequences,

(1) A=0.15, B=C =0, D= 0.28 (allowed, An % 0)
(ii) A =10.6, B=C=20, D = 0.28 (allowed, n = 0)
(iii) A = 0.15, B = C =D = 0 (forbidden monopole or quadru-

pole transition)
(iv) A =B =D=20, C = 0.1 (spin exchange transition)
are to be taken. In the case of a forbidden transition, fij
values are defined as that of the nearest allowed transition.
For example, for the transitions 1ls - ns and 1s - nd, the
fij-value of 1s - np is titaken.

From eq.(S) and (17), we get

- 2
R = 1.97x10% £55 P(y) w;/Ey;. (18)

We compare in Table II the value ﬁﬁ which is calculated from



eq.(18) with the more accurate value which is obtained
theoretically or experimentally. The average value is <§M/Q>
= 1.9. We get good agreement for the allowed transitions near
the ground state.

P(y) for the sequences other than H-, He-, Li and Ne-
sequences in the case of (i), (ii), (iii) and (iv) are shown
in Fig.l as a function of y = Eij/kT’

This empirical formula by Mewe is considered as the best

of the formulae discussed above in (1), (2), (3) and (4).

III. Comparison

We compared the effective Gaunt factor g(u) for the four
empirical formulae discussed in §II and showed them in Fig.2
as a function of u = E/Eij’

The comparison of the excitation rate coefficient is
shown in Fig.3(a) for the transitions of NeVII (Be-seq.)
2s%(1p) - 2s2p(YP) and of 2s%(IP) - 2s2p(°P). The dotted
line shows the result obtained by eq.(3) using the collision
strength Q, calculated theoretically by Osterbrock (1970).
Black points are the experimental results by Johnston III
and Kunze (1971), for which the error may be about a factor
of 2. As seen in Fig.3(a), the formula of Drawin (1966)
gives the largest values and that of Van Regemorter (1962)
the smallest. As Mewe (1972) gave the values of coefficients
A, B, C and D for the H, He, Li, and Ne-sequences (see §II
(4)), we choose Be-sequence for comparison. Much better
agreement would be expected for transitions of H, He, Li and

Ne-sequences that for other sequences in the case of Mewe's

- 10 -



formula. The comparison of the rate coefficient for the
transitions of OVII 152(15) - 152p(1P) and of 152(18) -
152p(3P) is shown in Fig.3(b). There is not so much difference

6 . 107 ex.

between the values in the temperature range of 10
The experimental results by Elton and Koppendérfer (1967) are
also shown in Fig.3(b). All the calculated values are in good
agreement with the experimental values within an experimental

error smaller than a factor of 2.

B. Ionization

Tonization theory is much more difficult than excitation
theory, since there are now two free eclectrons to consider,
the ejected electron and the scattered one, after an ionizing
collision. But the results obtained by various approximations
are in better agreement with the experimental data than for
excitation. After Van Regemorter (1970), 50 % accuracy 1is
generally reached, and empirical formulae with an accuracy of
a factor 2 can be given easily for ionization while it is

difficult for excitation.

I. Approximation method

(a) Classical theory

Thomson (1912) introduced the following simple formula

for the first time

1 2

g = 4¢(1H/1)2 b - uh mal, (19)

where ¢ is the electron number of a shell with binding energy

I, u = E/I and I, is the ionization energy of hydrogen.

H

- 11 -



If we define a reduced cross section by

Ry = w/1piclo, (20)

oR(u) is then a function of u only:

UR(u) = 4ul( - u_l)wag (21)

It is important that a reduced cross section depends only
on energy but not on other atomic parareters. For high
energies o ~ 1logE/E due to the quantum effect, and eq.(19)
is not valid. Thomson's théory gives linear threshold low
which agrees with the quantum mechanical results (Rudge §
Seaton (1965)).

Gryzinski (1965) derived a fairly simple expression for
the ionization cross section of atoms, improving the classical

theory,

o = g, q(u);/Iz (22)

where

g = $¢5H3 20+ Za-Lymiz.7+ -1t/

u+l 2u

1}

(b) Semiclassical theory

Burgess (1963, 1964) improved Thomson's theory by taking
into account some quantum-mechanical properties, particularly

exchange between the two electrons. Furthermore he combined

- 12 -



this theory with the higﬂ energy results given by the impact
parameter method. This is the same method that we already
discussed in §A, I(b) for the case of excitation, and it
requires the knowledge of the oscillator strength f(free-

bound). The agreement with experimental data is good.

(c) Quantum theory

In the case of ionization, it is difficuit to find the
asymptotic form of the field, since both ejected and scattered
electrons are in continuum state. There are several approxi-
mation methods used in the quantum theory, and they are
reviewed in articles by Rudge & Seaton (1965) and Rudge (1968).
We note here only the characteristics of some approximation
methods.

Born approximation (a), (b); Born (b) is extensively
used at present. If the wavefunction describing the bound
state of the target is good, we can expect 50 % of accuracy.

Born Oppenheimer approximation gives better results for
highly ionized ions.

Born-exchange approximation; Good agreement between
theory and experiment is obtained for H{(ls) and for He+(1s).

« Born (b) and Born-exchange are considered as the best
available approximations now, but recently Glauber approxi-
mation has also been used for the ionization problem and
has given good results.

- For high energies, from the Bethe form

o = A log(E)/E + B/E. (23)

- 13 -



Odmivar (1969) gives analytical expressions for A and B
for hydrogenic systems in their ground states. Inokuti and

Kim (1968) gave accurate values of A and B fro H .

II. Empirical formula

It is not as difficult to find an empirical formula in
the energy range E/I < 10 as in the case of excitation,
whereas the theory itself is more difficult. As we can
suppose from eq.(21), the reduced cross section might not
depend on the species of iéq. In fact almost all of theore-
tical and experimental reduced cross sections oR agree with
each other within a factor of 2. Most of the empirical
formulae are based on this result. The scatter of the
reduced cross sections increases at high energies.

Elwert gave first a simple empirical formula and many
.other formulae have been proposed later. We discuss here

several typical formulae.

(1) Post (1961)

The cross section is expressed by

fnu = = > cm”, (24)

where u = E/I, and the ionization rate coefficient B is

. -4
o - dre b hex) = 2220 " 4 hix) en® secd, (259

(2mmkT) 1/ 2kT 13/2 (ev)

where x = I/kT. The definitions of h(x) is the same as

- i4 -



eq.(10), and b =~ 0.2.

(2) Drawin (1966)

The cross section for Z and for i-state is
IH
o = 2.34 x 107102 2oL gn(a.25y,u) cn®. (26)
I u

The values £; are listed on Table for the case’'of i =1

(ionization from the ground state). For all other excited

states (i > 1), g3 2 1. The value of Y3 is of the order of

1 and is written approximately

L
y; =1+ £ (27)

where Zeff =27 - Ne + 1 is the effective charge seen by the
electron in i-state.

The ionization rate coefficient is

H
I
B = 1.46x10-1ogi(—l)2T1/2(°K)xw1(x, ;) cmPsec L. (28)
I
The values of wl(x, Yi) are given on Table, and ¥, can be
approximated by
. e % 1 1
U0, v3) F (G + an{1.25v; (1+2)}] (29)
X

1+x 20+x

(3) Lotz (1967, 1968)

Lotz deduced a cross section from many experimental

- 15 -



results
N 2n(E/1;)
T a, g; ——3 {1 - bjexp[-c; (B/1;-1)11,

J
EI.
J

where Ij(ev) is the binding energy of an electron in j-th
subshell (j = 1 means the outermost subshell), Ej is the
number of equivalent electrons of j-subshell, and aj, bj’_cj
are individual constants which have been determined by a
reasonable guess. The values aj, bj’ cj are given in Tables
for certain ions from hydrogen to Calcium by Lotz (1967) and
from Scandium to Zinc by Lotz (1968). For the cross sections
known experimentally, this formula gives accurate results
within experimental error. For the ions ionized more than
four times, he assumed that a; = 4.5 x 10714 cn? (ev)z, b; =
0 and c; = 0 in order to have agreement with the theoretical
calculations of Rudge and Schwartz (1966) for hydrogen-like
‘ions, as there are no experimental data. He mentions that
the validity of this assumption for ions not hydrogen-like
might be questionable. The number N of subshells to consider
was taken to be 2 for ions from H to Ca, and to be 3 from Sc

to ZIn.

The rate coefficient is

N a.cg. © b.expC.
B = 6.7x107 3 _37%51__{ 1 J exp(-z) dz - “l__g_l_
i=1 T (ev) Ij/Te Ij/Te z lj/Te+Cj
exp(=y) gy} (31)
y
Ij/Te+Cj

- 16 -



He gave the cross section ‘curves for atoms and for singly

charged ions, and he estimated the error to be not higher

+40
_30 0 .

The calculated values of B are listed numerically in

than

Table for all ionized states for the temperature of 1 ~ 104
eV. The error becomes large for temperatures lower than the

ionization potential.

(4) Seaton (1964)

Seaton approximated ucR as a straight line (u < 2) like

I
o = 2.2 (Fh? g umd) 4,2 (32)
I u
and Ij
g = 2.0x10 81/ 2 (o) ¢ 25 (m,2) IJTz(n,z) e T cmdsec™?
(33)
where Cj is the number of electrons in subshell (n, &), Ij(ev)

is the ionization energy. This formuia is good for highly
charged positive ions, and for low energies. Jordan (1969)
used this formula to calculate the ionization equilibrium in

a hot thin plasma for the elements from C to Ni.

(5) Hydrogen-like ions

Percival (1966) gave formulae to calculate the average
cross section for ionization from excited state of hydrogen
and hydrogenic ions. There is no limitation on the energy
range of validity.

i) ionization from the ground state (i = 1) for hydrogen

- 17 -



atom

(1.19 &n u, + 5.26) (u. - 1)
cH = 1 2 ﬂaz (34)
1 2 (o}
o
u; *+ 1.67u1 + 3.5

ii) dionization from the exciied state (i > 1) for hydrogen

atom
. -1
1.281 n u, + 6.67)(u, - 1)
H o ( i 1 2.4
Ois1 ~ . ma_i (35)
e
uy + 1l.67u1 + 3,57
iii) hydrogenic ions (charge number Z)
o = oH[l + 2.3 ] 774 (36)
1 -1, 2 2
(1-2 )° + Z(ul-l)

It is necessary to do numerical calculations for getting
. the ionization rate coefficient B.

Jacobs (1972) gave a formula for B adjusting the numerical
constants to the experimental results for Z = 1 and Z = 2 and

to the calculated values for Z = 50.

B = 6.67x10 2(2.42 - 172 0-%9)(%)4 /T_(ev) e X (37)
z Z

III. Comparison

We show in Fig.4 the comparison between the values
calculated by some empirical formulae discussed above, and the

experimental results of Aitken and Harrison (1971), for the

- 18 -



ionization cross section of OIII -+ OIV. The result by Seaton
(1964) is good at low energies, but is too large at high
energies. The formula by Lotz give underestimated results
near threshold, but gives good agreement at high energies.
The values by Post (1961) and by Drawin (1966) are smaller by
a factor of 5 and 1.7 respectively than the experimental
results.

We show in Fig.5 the results of various empirical formulae
for the ionization rate coefficient B. As the approximation
method for evaluating the integral depends on the empirical
formula, the trend of the absolute value of B does not always
coincide with that of o. For example, the cross section by
Post (1961) is small but his rate coefficient gives a value
larger than any other result. The result calculated by
Seaton (1964) is larger than that by Lotz.

The same comparison as in Fig.5 for the rate coefficient

of FeXV » FeXVI are shown in Fig.6. Rudge and Schwart:z
(1966) calculated tﬂe ionization cross section and rate
coefficient using the Bon-exchange approximation, and they
are shown in Fig.6 with dotted line. The values by Seaton
and by Lotz are both larger than the theoretical results in
the high energy range.

The formulae (32) (33) by Seaton are simple and can
be used easily, but they are not suitable at high energies
(u > 2, x > 2). The formulae by Lotz are rather complicated
but we can use the tabulated numerical results for rate

coefficient.
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Fig.l

Fig.2

Fig.3

Figure Captions

Integrated gaunt factor P(y) in eq.(17) which is
'proposed by Mewe (1972) to calculate electron colli-
sion excitation coefficient for the sequences other
than H, He, Li and Ne-sequences.

P(y) = A+ (By - Cy’ + D)eVE (y) + Cy

where y is the ratio of the excitation energy Eij
to the electron temperature kT.
(i) allowed transition An $ O
(ii) allowed transition An = 0

(iii) forbideen monopole or quadrupole transition

(iv) spin exchange transtion

Comparison of effective gaunt factor g(u) between
several empirical formulae as a function of u. u

is the ratio of the electron energy E to the excita-
tion energy Eij‘
o - l.28><10'15(IH/Eij)Z:Eijg(u)u-l

(1) Post (1961), (2) Van Regemorter (1962), (3)
Drawin (1966), (4) Mewe (1972)

Excitation rate coefficient as a function of temperature.
(a) For the transitions of NeVII 46SR 252(18) - 2s2p
(1p) and NevII 895A 2s%(Ys) - 2s2p(3p).
Post (1961), Van Regemorter (1962), Drawin
(1966), Mewe (1972) ---- empirical formula.
Osterbeck (1970) ---- theory.

Johnston III and Kunze (1971) .... experiment.
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Fig.4

Fig.5

Fig.6

(b) For the transitions of OVII 21.6& 152(18) -

1s2p(1P) and OVII 21.8A 1s2(}s) - 1s2p(°p).
Post (1961), Van Regemorter (1962), Drawin
(1966), Mewe (1972) ---- empirical formula.

Elton and Koppenddrfer (1967) -... experiment

1

. 1ls » (2ls+2lpy

ls & (23s+2%p)

: 1lso+ 21p

- 1

1

2 3

Tonization cross section for e + 072 » ¢ + 07° + e
Aitoken and Harrison (1971) ..... experiment.
Post (1961), Seaton (1964), Drawin (1966), Lotz (1967,

68) +---- empirical formula.

2 3

. . . . + +
Ionization rate coefficient for e + O +~e + 0 + e

Post (1961), Seaton (1964), Lotz (1967, 68), Drawin

(1966) «««-.. empirical formula.

Ionization rate coefficient for e + Fe+14 + e + Fe+15

+ e

Seaton (1964), Lotz (1967, 68) «+.-- empirical formula.
Rudge and Schwartz (1966) ..... theory.
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COMPARISON OF

TABLE II

VALUES OF COLLISION STRENGTHS

Iso el.

Osci.stren.

N o
sequence Transition Ion A (A) c QM Q QM/SZ
Be |2s® - 2s2p | NIV |765.1 0.64 5.9 3.4 (1) 1.7
5.7(2) 1.04
NeVII | 465.2 0.41 2.3 1.84(1) | 1,25
3.05(2) | ¢.75
2s? - 2s3p | NIV |247.2 0.55 0.67 | 0.231) | 2.9
ov |172.2.] 0.59 0.50 | 0.141) | 3.6
| Nevm| 97.6 0.45 0.22 | 0.054W)| 4.1
2s% - 2s3s | NIV |257.1 | (0.55) 0.34 | 0.23(1) | 1.5
ov |178.2 | (0.59) 0.25 | 0.079(0)| 3.1
NeVI [ 100.2 | (0.45) 0.108 | 0.0371)| 2.0
2s? - 2s3d | NIV |233.0 | (0.55) 0.31 | 0.23(M) | 1.3
ov |163.2 | (0.59) 0.23 | 0.26(1) | o0.88
Nevii| 93.5 | (0.45) 0.10 | 0.07() | 1.4
252 - 2s4p | NIV |197.2 0.13 0.126 | 0.12) | 1.1
ov  |135.5 0.138 0.002 | 0.045M) | 2.0
252 - 2s4d |NIV |194.3 | (0.13) 0.060 | 0.15(1) | 0.4
tov  [140.0 | (0.138) 0.046 | 0.041) | 1.15
NeVI | 75.0 | (0.165) 0.0295| 0.027(1) | 1.7
2s% - 2548 |ov  |133.3 | (0.138) 0.044 | 0.032(1)| 1.4
252 - 2s4s |ov  |136.7 | (0.138) 0.045 | 0.034) | 1.3
Mg |3s% - 3s3p |Fexv [284.3 | 1.18 4.0 3.37(3) .2
2.7(4) .5
352 - 3s3d |Fexv [137.1 | (1.18) 0.38 | 0.31203) | 1.2
6.18 4 1




TABLF II (continued)

.

si?{zereulzé Transition Ion A (f\) OSCiéStren' Ry Q QM/Q
Al |3s%3p - 3s3p2 |FeXiv | 260. 0.53 9.84(10.203) | 0.96
3523p - 35234 " 211.3 0.63 10.6 [10.3( | 1.03
35%3p - 3s24p " 95.2 0.27) 0.37] 0.45(3)| 0.82
35%3p - 3s%4s " 71.5 0.062 0.12] 0.04703) 2.5
3523p - 3s24d " 59.0 0.273 0.46| 0.1205)| 3.8
3523p - 35%4f " 56.4 (0.27) 0.22| 0.47(3)| 0.47
Si  |3s%3p? - 3s3p> |Fexm | 246. 0.22 5.9 | 6.407) | ¢.02
35%3p%- 3p3a(3py| 201. 0.49 10.7 [15.98(7)| o0.67
3523p%- 3p3d (1F)| 177.1 (0.49) 0.55| 0.22807) 2.4
K |3p%3a - 3p%af |Fevmm | 131. 0.604 3.9 | 0.04(8)| 4.1
3d - 4p " 196 0.039 0.38 | 0.179%) 2.1
3d - 5. " 108 0.24 1.2 | 0.3699) 3.2
3d - 6f " 08.5 0.117 0.57 | 0.18(0)] 3.2
3d - 7f o 93. 0.034 0.16] 0.103(8) 1.6
Notes for Table I
(1) gézD. Johnston II and H. J. Kunze (1971), Physical Review A, 4,
(2) D. E. Osterbrock (1970), J. Phys. B., 3, 149.
(3) 0. Bely and M. Blaha (1968), Solar Physics 3, 563.
(4) D. R. Flower (1971), J. Phys. B., 4, 697.
(5) M. Blaha (1971), Solar Physics 17, 99.
(6) S. J. Czyzak and T. K. Drueger (1966) Ap. J. 144, 381.
(7) D. R. Flower and G. Pineau des Foréts (1973), Astron. and
Astrophys. 24, 181.
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