





IPPJ-AM-31

ATOMIC PROCESSES IN HOT DENSE PLASMAS

Takashi KAGAWAD), Takako KATO, Tsutomu WATANABE?)
and Shosuke KARASHIMA3)

Institute of Plasma Physics, Nagoya University
Chikusa-ku, Nagoya 464, Japan

August 1983

Permanent address:

1) Department of Physics, Nara Women’s University
2) The Institute of Physical and Chemical Research
3) Faculty of Engineering, Science University of Tokyo



This document is prepared as a preprint of compilation of atomic data for fusion
research sponsored fully or partly by the IPP/Nagoya University. This is intended for
future publication in a journal or will be included in a data book after some evaluations
or rearrangements of its contents. This document should not be referred without the
agreement of the authors. Enquiries about copyright and reproduction should be ad-
dressed to Research Information Center, IPP/Nagoya University, Nagoya, Japan.




Abstract

The central~fi=ld models and the theoretical analyses for
some atomic processes in hot, dense plasmas are reviewed.
The qualitative trends of the density- and temperature-

dependent properties of plasma particles, which tould be

used for diagnostics of the plasma, are described.



él. INTRODUCTION

Hot, dense plasmas have vigorously been studied in
various fields in physics such as plasma physics,
astrophysics, atomic physics and solid state physics, in
particular in connection with the inertia confinement fusion
(ICF) study.

In the ICF research, description of the plasma under
extreme conditions such as high temperature (T2 10° K) and
high density (Ne;lozq /cm3 ) in terms of the microscopic
atomic processes is required when modelling the plasma.
Since the ICF plasma is usually produced in a very
short-time scale (21077 sec), it is neither homogeneous nor
steady. This means that the motion of nonthermal electrons
and ions accompanying mutual collision or indirect
interaction through the emission and absorption of photons
determines the density and temperature in each position and
time. This situation is very different from low density
plasmas observed in solar corona or the Tokomak, where the
effect of the surroundind plasma on a test atom can be
considered to be a small perturbation. These low density
plasmas, where collision processes are dominant, have been
studied by use of the perturbation theory for the atomic
processes in the plasma.

Modification of the models based on the thermal
equilibrium such as corona equilibrium or the local thermal
eqilibrium (LTE) may be required in the study of an unsteady
plasma such as the ICF one. Moreover, one has to introduce
the molecular or solid-state effects into the model in
describing the atomic properties of ions in dense plasmas,

since the average internuclear distance in these plasmas



becomes much smaller than that in the normal solid state:
The radii of most atomic orbitals are larger than the
internuclear distance.

A large number of papers on hot, dense plasmas so far
been published concern with a variety of subjects such as
radiation or particle transport processe., plasma
spectroscopy, equation of states, atomic processes, etc..
One component plasma has extensively been studied as an
ideal system (Ichimaru 1977).

Even if one confines the subjects to problems in
diagnosing hot, dense plasmas through the analysis of the
line broadening and line shift in X~ray spectra observed,
there are two main themes related to atomic physics. One is
the structure of ions in a piasma as a source of light and
the other is the atomic processes related to energy
transport and opacity. Various models with the assumption of
the thermal equilibrium f.. the plasmas have been proposed.
Most of them are the central-field atomic model which
yields the single-electron energies of ions in a plasma.

This note presents a brief survey on the atomic models
and the qualitative trends of the density~ and
temperaturewdepeﬁdent properties of ions in a hot, dense
plésma. Recently some review papers on atomic physics in hot,
der.se plasma have been published (More, 1981, Weisheit 1981,
Gupta and Rajagopal, 1982; papers in JQSRT 27, 1982).

Details of the studies on dense plasmas including the
subject on energy transport and opacity can be found in

these articles.



§2. CENTRAL-FIELD MODELS FOR ATOMS IMMERSED IN A PLASMA

A test charge immersed in a‘plasma receives various
types of the perturbations from surrounding plasma
particles. One of significant perturbations is the screening
of the nuclear charge by free electrons as a result of the
plasma polarization effect, i.e. departure from the uniform
distribution of electrons and ions near the test charge.
Another is the fluctuation of the microfield around the test
charge due to the instantaneous motion of ions and
electrons and their collective motion called as the plasma
oscillation. In addition to these effects, the perturbation
due to electron impact is also an important factor to
characterize the level population or life time of excited
states of the ion especially for low-density plasmas.

As the density of a plasma increases, the screening of
the nuclear charge by free electrons becomes significant. On
the other hand, this effect of the screening decreases when
the temperature becomes high, since the ion can move freely
over the potential barriér due to the surrounding plasma
media. In order to specify such plasma condition instead of
two parameters of the densi*y and temperature, one often
uses a dimensionless plasma parameter I' which is the ratio
of the average Coulomb energy for ions to the temperature of
the plasma, defined as
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where Zi and Ri are the avearge charge and ion-sphere radius

of ions, respectively. The ion-sphere radius is given by
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where Ng is the electron density.

The structure of a test atom immersed in a plasma has
extensively been investigated by using the central-field
models with appropriate electrostatic potentials for the
atom. The electrostatic potential V is obtained as a

solution of the Poisson equation written as

ViV = —dnep 3)

if the average charge distribution both the positive and
negative charges around the atom with an appropriate model
is given. Since the average charge distribution o in

Eq. (3) heavily depends on the plasma condition, there
certainly exists a critical condition at which a particular
model breaks down. In the following, various central-field

models used in dignosing a plasma are described briefly.

2-a) Debye-Huckel Model

This model starts with the non-uniform statistical
distribution of the charged particles around a test charge
Ze. Using Boltzmann's law, the number of a-th particle

having the charge Z,e as a function of r is written as

Ze
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where Nao is the uniform value and V(r) is the

electrostatic potential. The DH average charge distribution

pDH(r) can be obtained as
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The condition that a plasma be neuvtral leads to the

following relation,
TZ,N, =0 . (6)

The exponetial part in Eq. (5) can be expanded to the
first-order of V under the condition that kT>>|V|, i.e.l<<1,
By inserting this linearized pDH(r) with respect to V into
Eq. (3), the DH potential VDH(r) is obtained in the

familiar form,
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where D, the Debye length, is given by

1
P 7 e @zi NI ®

The DH potential could be a good approximation for low
density and high teuperature plasmas because of the

lihearlized pDH(r).

2-b) Ion-Sphere (IS) Model

In a strongly compressed plasma, the density of the
free electrons around the ion is very high. The ion-sphere
(IS) model is constructed from the assumption that electrons

are uniformly distributed in the ion sphere, so that pIS(r)

is written as
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0, when r>R

where R; is the ion sphere radius. The IS potential is
obtained by use of the Poisson equation in the following

form,

Ze Ze G r? ) " <R
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It is noted that R; depends only on the density of the
plasma. However, as nuclei are assumed to be fixed in this
model, it can be expected that this model yields good

results for low temperature and high density plasmas.

2-c) Thomas-Fermi (TF) Model

This model is one of the ion-sphere models which are
suitable for dense plasmas. The TF theory at zero
temperature has well been known to be useful in the study cof
highly compressed matter, since the atomic electrons can be
confined within an atomic sphere by introducing the cut off
condition for the electron distribution, where the charge
at the boundary remains non-zero. The zero-temperature TF
theory has been extended to the finite temperature TF theory
by some authors (Feynman et. al. 1949 and Cowan et. al.
1957). If one replaces the atomic electrons in a sphere by

the finite-temperature semi-classical gas, the TF



distribution p qp(r) is written as
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where the chemical potential u is determined by the

requirement that the cell be neutral:

ﬁn: Odr=2 . (12)

By solving Eq. (11) and Eq. (3) self-consistently, the
V&F(r) is obtained numerically. The TF theory has widely
been applied to the dense plasmas with various

nodifications.

2-d) Average Atom (AA) Model

The average atom model (Chandrasecker 1939) is
essetially based upon the assumption that atomic electrons
are distributed in the single-electron levels according to
the Fermi statistics. Tﬁis assumption leads to the

non-integer occupation number for the nf state given by

2022 + 1)
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where €0 is the orbital. energy. The single~electron levels
for an atom can be obtained as solutions of the Schrédinger
equation with an appropriate screened potential. The average
atom model has been used for plasma modelling because of

its simple and unified treatment of the structure for

various ionization stages of an ion immersed in a plasma.



However, this model cannot be used to identify the lines
from atoms in different ionization stages or to calculate
the ratio of intensities for lines because this model leads
to a fictious atom which consists of the average of all the

possible ionization stages of the real atom.

2-d-~1l) Self-Consistent-Field-Average-Atom (SCFAA) Model
Rozsnyai (1972) has proposed a self-consistent-
field-average—-atom (SCFAA) model, where all electrons are
assumed to be confined within a sphere having the radius R; .
The relativistic Hartree-Fock~Slater (RHFS) method is used
to determine the single-electron levels for the bound
electrons. The density of the bound electrons % is
calculated with the RHFS orbitals and the Fermi distribution
function. On the other hand, density of free electrons pf
is determined by use of the relativistic expression of the
finite temperature TF theory. The total potential including

the exchange and the correlation potentials is calculated

using Py and Pe This total potential written as

V@ = Eri + Vo () + Vi@ + Vex (1) + Veorr (1) (14

is used in the RHFS equation. The calculation terminates
when the self-consistent potential is obtained. This model
has been used to calculate various physical quantities of
ions in a hot, dense plasma such as the line shift and the

photoabsorption cross section by Rozsnyai.

2-d-2) Screened Hydrogenic Ionization (SHI) Model

Application of the semi-clasical WKB theory to



hydrogenic systems yields analytic expressions for the
energy and expectation values fof the coordinate or momentum
operators. These expressions except for the energy are
different from those obtained with the quantum mechanics.
The screened hydrogenic ionization (SHI) model (More 1981)
is an extension of the WKB results for hydrogenic systems to
many-electron atoms, where the effective charges are
introduced into the WKB expression for the energy so that it
becomes a good approximation for each orbital energy in
many-electron atoms. In this model, the sub-shell splitting
of orbital energies between ng and ng' is neglected. The
SHI orbital energy with a principal quantum number n for an

atom has the form

2 2
Qne
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En = Ep - ; (15)

where E& is the energy-shift with outer screening, Qn is
the effective charge due to the inner screening and a, is
the Bohr radius. In the WKB approximation, a shell is

expressed by a classical orbit with the radius r as

(16)

Qn depends on the electron population {Pm} of the shells
inside roe whereas Eg depends on {Pm} of the shells outside
r. This dependence of Qn and Eg are represented with a

linear approximation with respect to Pm as
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where 0(n,m) is the screening coefficient which describes
the screening of the n-th shell by the m~th shell electrons.
A set of screening coefficients {o(m,n)} can be calculated
using the first-order perturbation theory for hydrogenic
wavefunctions.

The SHI model essentially deals with a set of electron
populations of various shells {Pm} combined with screening
coefficients {g(m,n)}. If the thermal equilibrium is
assumed for a plasma, the average population (occupation)

number Pn may be written as

= _ 2n?

exp [(En — #)/kT] + 1

(19)

This model has also been applied to diagnostics of the
non-LTE plasmas such as the ICF one because the much
reduction of the calculation for such a complex system is

possible with this model.

2-e) Intermediate Models

The limitation of the DH model is that it can be
applied only to low-density and high-temperature plasmas,
whereas the IS model is a good approximation for
high-density and low-temperature ones. There are some models

which cover the intermediate plasma conditions, where both

—-10—~



the DH and the IS models are not valid. Here, the
Thomas=-Fermi-ion-core (TFIC) modél (Stwert and Pyatt 1966)
and the effective screening model (Singwi 1977; Gupta and

Rajagopal 1979) are described.

2-e-1) TFIC Model

In the ion-sphere (IS) model, each ion has the ion
sphere which contains enough free electrons to maintain
charge neutrality in the sphere. However, the effect of the
position correlation between ions moving in various
positions is not contained in this model. The TFIC model
consists of the TF model for free electrons, the average
atom (AA) model for bound electrons and the
Maxwell-Boltzmann distribution for neighboring ions. The
total charge distribution p(r) is expressed as a sum of the
charge distributions for bound electrons pb(r), free

electrons pf(r) and neighboring ions pi(r) in the following,

p() = pp (@ + ps () + pi (1) ; (20)

where
c =—LE 2(22 + 1) |Rog ()12 @1
P (1) 4n %2 exp [(8no — M)/KTe] + 1 w1 D
8 L= P2 dP
SR s (B —ove - i+ 1 (22’
and
Ze
pi (r) = pi exp {— T V(r)jl . (23)

The radial part of the wave function qmﬁr) is obtained as a
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solution of the Schrodinger equation using the potential
V{(r). The Poisson equation (3) and Egs. (20)-(23) combined
with the Schrodinger equation are solved iteratively until
the self-consistent solution for P(r) and V(r) is obtained.
This model has been used to explain the lowering of the
ionization potential in the intermediate region of the

plasma conditions (Stwert et. al. 1966).

2-e-2) Effective Screening Model

The effective screening model deals with the effective
potential which is obtained through the density functional
approach for the formulation of the free-energy framework.
The effective screening potential (Gupta et. al. 1979) is

expressed as

Vet 2e f” ‘ ( sin qr 1 (24)
T, Ng, = 2 ’
eft @ lle: ) = 7 U\ ) 1= (4ne* 1) x (@ s To)

where X(qﬂhT) , the RPA Lindhard function, is given by

&P f(p+q)- f(p)
2nt)  p? + q)°
R

x(qn,T) = -2 (25)

and

p’ 1 :
exp [(THT— w)/kT] + 1

f(p) = (26)

For g-0 limit in Eqg. (24), %ﬁf(r) reduces to the screened
Coulomb potential with the effective screening parameter

£(ng,Tg) in the followung form,

- 12—
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The parameter & (ne,Te) also reduces to a constant
corresponding to the DH and the TF values for high

temperature and low temperature limits, respectively:

£ (ne, Te) —> épu (28)
Te — o
and
£, Te) ——> &rr . (29)
Te -0

—13—



§ 3, STRUCTURE OF IONS AND ATOMIC PROCESSES
In this section, the density and temperature effects on
the structure of ions and some atomic processes in hot,

dense plasmas are described.

3-a) Energy Levels

As the nuclear charge is fairly screened in the DH
potential, the values of the most screened potentials based
on the corresponding central-field model described in §2 as
a function of r always lie between those cf the DH and the
pure Coulomb potentials;.The single~electron energies for
ions are obtained as solutions of the Schrodinger equation
with these potentials.

The shield of the nuclear charge leads to a short range
potential which allows only a finite number of bound
states. This means that highly excited bound states (Rydberg
states) for a pure Coulombic potential dissolve into the
continuum sea of states in the system. This fact is known as
'continuum lowering' or 'pressure icnization' as a result
of the screening of the nuclear charge by free plasma
electrons. In addition to the continuum lowering of energy
levels, separation of the energy between neighboring states
decreases as the screening of the nuclear charge increases.
A screened Coulomb potential yields the sub-shell splitting
of the energy levels belonging to the nf states for which
azimuthal quantum numbers are different. The same type of
the splitting of energy levels is always observed in the
Hartree-Fock (HF) orbital energies of an isolated atom since
the HF potential is a non-Coulombic potential.

Although the DH model is a good approximation for low

- 14—



density and high temperature plasmas, it has been examined
over a wide range of the plasma conditions by some authors
(Rogers et. al. 1971, Roussel et. al., 1974). The dependence
of the DH energy levels of lower-lying and higher-lying
states on the screening lengths (Rogers et. al, 1971) is
showr in Fig. 1 and 2, respectively. Characteristic
behaviors of the bound levels such as the continuum lowering
and the decrease of the spacing of energy levels mentioned
above are seen from these figures. It is also seen that no
bound state, as is expected, exists in the high-density

limit.

3-b) Oscillator Strength and Photoabsorption Cross Section
The absorption oscillator strength f£(b <+ a) and the
spontaneous emmision rate A(b~+ a) are related to the opacity
and line strengths of the observed spectra. The oscillator
strength f(b<« a) is connected with the spontaneous emission

rate A(b»a) through the relation,

3

C
- A(b—a) , (30)
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where m is the electron mass, ¢ is the velocity of light, Wy o
is the transition frequency and <b|¥|a> is the transition
matrix element in the dipole approximation.

The f-value or the A-value for bound-bound transitions
as a function of the density and temperature has been
calculated with the DH potential for hydrogenic systems
(Roussel et. al. 1974, Weisheit et. al. 1974, Shore 1975 and
Hohne et. al. 1982). They showed that the f-value or the

A-value for a transition decreases rapidly when the Debye

screening length becomes as small as a few times the
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critical screening length of the upper level. This is shown
in Fig. 3. Weisheit and Shore (1974) have calculated the
oscillator strengths and photoabsorption cross sections for
the 1ls +np transition for all the bound and continuum states
using the DH model. The calculated results of them show
that the decrease and sudden drop of the f-value at the
threshhold energy.

Hohne et. al. (1982) re-examined the behavior of the
oscillator strength for the bound-bound and bound-free
transitions and claimed the results of Weisheit and Shore,
namely, the drastic reduction of the osciilator strength at
threshhold, where the smooth connection of the f-value
between the bound-bound and bound-free transitions around
the threshhold was not observed. The conclusion of Hohne et.

al. is that the averaged oscillator strength given by

One (O)) = P =§i 1fnﬂ, q'Q' (qu'Q'/dq’)—l lhw = qugl — EnQ (31)

should be used for a non-Coulombic potential such as the DH
one, since the application of the Coulomb result for the
differential oscillator strength df/dE to non-Coulombic
systems leads to an incorrect resutlt. The calculated
results of the averaged oscillator strengths an(w) for the
DH potential by Hohen et. al. are shown in Fig. 4 together
with those for the pure Coulomb potential. It is seen from
Fig. 4 that the curve of cng(m) for the DH and the pure
Coulomb potentials are very close to each other.
Characteristic behavior of the photoabsorption cross

section for a screened potential is the k?%*+! pehavior near



the threshhold energy (Wigner 1948). Shore (1975), however,
showed that since near-resonant wavefunctions for energies
with a narrow interval between the DH and the pure Coulomb
threshholds have the enhanced amplitude within the potential
well interior, the photoabsorption cross section increases
in this region of the photon energy. The same result has alsc

been obtained by Hohne et. al. (1982).

3-¢c) Shift of Spectral Lines

The shift of spectral lines has been calculated with
various atomic models for an emissive ion in a plasma. As
has been mentioned before, the energy difference between the
states decreases as the screening of the nuclear charge by
free electrons increases. This means that the lines are
shifted toward the lower frequency side, that is, the red
shift. On the other hand, the the plasma polarization shift
(PSS) theory (Griem 1974) which deals with the effective
charge of the ion using the perturbation theory gives the
blue shift for the resonance line of the hydrogenic helium
ion.

Skupsky (1980) has calculated the magnitude of the line
shift with the modified Thomas-Fermi~ion-core (TFIC) model
for the 2p~+ 1ls transition of a hydrogenic impurity neon in
deutrium and tritium plasma, where the charge distribution
of the bound electren is obtained with the statistical
average of the 'wlslz and |wzp|2. The calculated shifts of
the Lyman-a line for hydrogenic neon in the plasma are
compared with those using the DH, the IS and the effective
screening models in Fig. 5. In the low density limit,

Skupsky's result shows the characteristic oscillation and

-17-



the blue shift. However, in the high density limit, the line
shift with his model becomes the red shift which is the
same trend of the line shift as other models such as the DH
one. This behavior of the lire shift, namely, the blue shift
in the low density limit and the red shift in the high
density limit has been confirmed by the SCFAA calculation
(Rozsnyai 1975). In Fig. 5, the calculated results with
different models (Cauble 1982, Gupta et. al. 1981) are also
compared. Cauble's result is based on the plasma
polarization shift theory, while Gupta et. al. used the
effective screening model. These calculations of the line
shift for hydrogenic neon in a hydrogen plasma give the red
shift with the intermediate values between that of Skupsky
and the DH value for all deﬁsities of the plasma considered.

Concerning the profile of spectral lines, there have
been proposed some methods other than the plasma
polarization shift theory (Griem 1974) to calculate both the
shift and width of lines at the same time. The problems of
the broadening of the spectral lines are closely related to
opacity in hot, dense plasmas. Using the perturbation
expansion of the partition function for the multicomponent
plasmas, Nakayama et. al. (1964) has derived a pseudo-
Schrodinger equation containing the complex potential.
Yamamoto et. al. (1980) have studied tiie complex level shift
which incldes both the shift and width, with the quantum
scattering theory based on the impact* apprcximation.
However, it seems that problems lie in the application of
such method based on thr perturbation thecrv to dense

plasmas.
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3-d) Free-Free Transition

Free-free transitions are impbrtant processes in
problems for the transport and loss of the radiation in
plasmas. Especially, the free-~free photoabsorption plays an
important role in heating plasmas by laser.

The cross section ¢ for the free-free transition is

often expressed by the Gaunt factor G as

G =o/og , (32)

where goj is the Kramers classical cross section,

16w I A

g, = aQ —
7 3/3 0 2m Wohw

(33)

Here, 0 is the fine structure constant, W, is the energy of
the incident electron and v is the frequency of the photon
emitted. The general expression for G in the
non-relativistic Born approximation has been given by Grant
(1958).

The Gaunt factor can be obtained in an analytic form if
an analytic form such as»the Yukawa-type function is
assumed for the electron-ion potential in the Born

approximation. Suppose the potential V(r) is constructed as a

superposition of the two Yukawa-type potentials, given by

Z - N N
V() =e [——————b e~ + ———rb e‘ﬂrjl , 34)
I

where Z is the nuclear charge, Ny, is the average number
of bound electrons and a and B are screening parameters, the

Gaunt factor G has the following analytic form,

—19—
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and q mean the maximum and minimum values of the

Imax min

momentum transfer g, respectively.

Rozsnyai (1979) has derived Eq. (36) and calculated
the Gaunt factor averaged over the energy distribution
of the free electrons in cecium plasmas at T = 100 eV and
1 KeV, using the potential in a form of Eg. (34) where the
parameters o and B were determined so that the values of
V(r) becomes the same as those of the SCFAA potential
at two chosen points of r. His results show that the
Gaunt factor increases in the high energy photon region
and decreases in the soft photon region as the

density becomes high. When the density increases, the

relative drop of the Gaunt factor toward the low-frequency

side of the photon energy is observed, since available upper

states decrease.

Recently Lamoureux et. al. (1982) have investigated the

—20—



free-free emission in a cesium plasma of the normal density
at kT=1 keV. They have calculated'the Gaunt factor not only
in the Born approximation but also with the relativistic
partial wave expansion method using both the Thomas-Fermi

potential VTF and the SCFAA one VS obtained by Rozsnyai

CFAA
(1979) for this system. The calculated results at Wy=1 keV

are shown in Fig. 6. The values of GP were obtained with the
Elwert factor in the Coulomb Born approximation. It is
noted that the Born-Elwert approximation for G is valid in a

relatively wide range of the incident electron energies

comparing with the Born approximation. GBSCFAA denotes the

results obtained with the expression for the Gaunt factor in

Eg. (35). Gopp and G indicate the results based on the

SCFAA
relativistic partial wave expansion method for Vg and Vgcopaa

, respectively.

-
SCFAA
smaller than those of GB. This indicates that the screening

It is seen from Fig. 6 that values of G are
of the nuclear charge by electrons reduces the Gaunt
factor. The calculated results of GB in the Born

SCFAA
approximation, however, are large compared with those of G
using the numerical partial wave method, although the
same SCFAA potential is used. This fact shows the importance
of the mothod of calculation rather than the potential in

the calculation of the Gaunt factor.

3-e) Collision Processes Between an Electron and an Ion
When an ion with the nuclear charge Ze and N electrons

is immersed in a hot, dense plasma, the electronic

excitation process of the ion by the collision of an

incomming electron,

—21 -~
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and
q=Z N (38)

is significantly affected by the presence of the positive
and negative charges near the ion. In vacuum, the excitation
of an ion by electron impact is treated as the collision
process strongly influenced by the long range Coulomb
potential between the electron and the ion. In a hydrogen
plasma, we should take into account the effect of the
electrostatic potential due to electrons and protons.
Usually some of these electrons move slower and others
faster, as compared with speed of the impact electron. Both
electrons and protons form the spherically asymmetric
potentials for the projectile electrons.

At present, no trial has been made for the estimation
cf the electronic excitation cross section which includes
such time dependent, spherically asymmetric potential
effects. Only the approaches using the averaged spherically
symmetric potential have been made for the excitation
processes of one-electron ion with the charge Ze (Hatton,
Lane and Weisheit, 1981) and the same processes for 2z=10,

i.e.,
e + Ne™* - e + (Ne™)* (39
In the paper of Hatton et. al. (1981), the electron-ion

interaction was assumed to be the following form of the

exponetially screened Coulomb potential:
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where D is the Debye-Huckel screening length, given in Eq.
(8), ;1 and ;2 are the position vectors of the projectile
electron and the bound electron, respectively. The cross
sections for the 1ls + 2s and the 1ls + 2p excitations have been
obtained. In the relation between the collision strength @
and the incident kinetic energy E, the scaling relation of
220 and E/Z? gives general schemes. The curves of the
collision strength for the ls +2s and the ls + 2p excitation
processes are shown in Fig. 7 and 8 with various DZ
parameters, respectively. The effect of the plasma
environment is to appreciably reduce cross sections just
above threshhold.

Davis and Blaha (1982) have also investigated the same
excitation processes for a impurity neon as those examined
by Hatton et. al. (198l). They tock an electrostatic

potential of the charged particles Ze as

T
V(@) = Zer! — 4ne [r'f r'? (pp + pf + pj)dr’

(1]

+f ' (pp + pg + pp)dr'] . (41)
I
The positive charge distribution p; was assumed to be
Pi = Pw exp (—eV (1)/kT) 42)
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where V(r) is given in Eq. (40) and Peo is the average
charge density in plasma. The free electron density with
wavevector k is considered to be distributed in the Fermi
statistical law of Eq. (11). By solving the two sets of the
Schrddinger equations for the bound and the free electrons
self-consistently, the scattering lengths for excitation
processes of the 1ls +2s and the ls +2p were obtained. The
calculated collision strength at Te=200 eV is also reduced

near the threshhold.

3-f) Stopping Power

In recent years there has been a growing interest in
the stopping power in hot, dense plasma, since ion beams are
also be used as an ICF driver. Recently the stopping power
for some heavy ions in various cold target materials has
been measured by Bimbot et. al. (1980) with the ion energies
up to 5 MeV/amu and by Hubert et. al. (1980) with those
2.5-100 MeV/amu. Some of these results are quite different
from those of Northcliffe et. al. (1970).

The dominant mechanism of the stopping power in a
plasma is the energy loss of the projectile ion through the
collision with plasma electrons in the Debye sphere and the
excitation of plasmons out of the sphere. Mehlhorn (1981)
and Meyer-ter-Vehn and Metzher (1981) have extended the
standard theory of the stopping power for cold materials by
Jackson (1962) to the partially ionized dense plasmas. The
total stopping power S for a plasma can ke expressed as a
sum of the bound-electron Sb , Eree-electron Sf and

plasma-ion Si stopping powers:

S=8 +8¢+8 . (43)
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The stopping power of the bound electrons Sb is written as

S = Min. (Spethe, SLss) * Spua (44)

where Snucl denotes the nuclear stopping power. The

notation of Min. (S S ) in Eg. (44) indicates

Bethe ' “LSS

the smaller value between the stopping-power formula of

Bethe S and the formula of Lindhard, Scharff and
Bethe

Schiott (1963) SLq accounts for both ionizations

s* SBethe
and excitaions of the atomic electrons, whereas SLSS , which
is derived by use of the imaginary part of the dielectric
function for the electron gas, calculates the electronic
stopping power for low-energy projectile ions. When a heavy
projectile ion with the very low incident energy‘passes
through the plasma of heavy elements, the slowdown of the
incident ion due to the elastic Coulomb collisions with the
plasma ions becomes significant. In this case, the nuclear

stopping power S is not neglected as a small value

nucl
compared with the electronic stopping power. The differece
of the theory between Mehlhorn and Meyer-ter-Vehn et. al.
lies in the use of different effective charge daff of the
projectile ion appsaring in SBethe: The stopping power
increases in proportion to the square of dogge Using
Jackson' formula, Mehlhorn (1981) has also given the
formulae for the stopping power of free plasma electrons Sf
and of the plasma ions Si in the binary collision theory.

recently May:iard et. al. (1982) have proposed a method
to calculate the electronic stopping power fou

nonrelativistic charged particles in dense electron fluids

by nsing the exact random-phase-apprcximation (RPA)
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dielectric function. This approach implicitly contains both
binary and collective processes. Maynard et. al. have given
some numerical examples for the stopping power of very dense
electron fluids, which is shown in Fig. 9. This figure
shows that the temperature effect is important for ions with
a few MeV per nucleon around Te==eF. As is expected, the
stopping power is a decreasing function of the temperature.
The theoretical stopping powers obtained as a scaled
fo.m with respect to the atomic number of the projectile ion
and/or the plasma ions described above are not compared

with experiment yet.
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Dependence of the energy levels on the screening
lengths for the six lowest-lying states (Rogers et.

al. 1970).

Dependence of the energy levels o. the screening
lengths for some of the higher-lying states (Rogers
et. al. 1970).

Spontaneous-emission transition probabilities in the
dipole approximation for the Debye-Huckel (DH)
potential is shown as a function of the DH screening

length (Roussel et. al. 1974).

Averaged oscillator strengths cnx(w) for the Debye-
Huckel potential for different values of D and R,
respectively (Hohne et. al. 1982): Crosses, ¢ at
discrete lines; full curve,ccntinuum. The
monotonically decreasing curves show the Coulomb
function Uizulwn. Arrows denote the line positions

of the unscreened Coulomb potential. Note the

shifted zero for different parameters.

Lyman-o line shift for neon impurity in a dense
plasma at kT=750 eV (Gupta et. al. 1982). S-Skupsky
(1980) ; DH-'linearized Debye-~Huckel' (Skupsky 1980);
NLDH-'non-linear Debye-Huckel' (Gupta et. al.

1981); open circles-V’eff (Gupta et. al. 1981); solid

curve~Cauble (1982).
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Fig. 6

Fig. 7

Fig. 8

Fig. 9

Gaunt factors for cesium at 1 keV temperature and

1.9 g/cm® density, as a function of the fraction kv/w,
of incident energy rad;ated by the photon (W,=1 keV)
(Lamoureux et. al. 1982). Dotted iine (...): Coulomb
Born approximation result GB; dashed line (==---):

Born approximation result GSCFAA from the SCFaa

potential VSCFAA of Rozsnyai (1979); solid line (

¢ relativistic partial wave expansion results
using the Thomas-Fermi potential VTE; dash-dotted
line (-+<-): realtivistic partial wave expansion
results using VSCFAA'
Total collision strengths z2Q as a function of

energy E/Z? (in a.u.) for the ls +2s transition for

screening lengths DZ=10, 20, 50, 100 and « a, (
(Hatton et. al. 1981). Results corresponding to
screened target-state energies for D2=10 ao and 20
ag(=—=~-—- ) are above the respective unscreened

energies curves. CBI results for Z=2 are also shown.

Total collision strengths 220 as a function of

energy E/Z2? (in a.u.) for tte 1s +2p transition for

screening lengths Dz=10, 20, 50, and « ag ( )
(Hatton et. al. 1981). Results corresponding to
screened target-state energies for DZ=10 ao (closed
circles) are above the respective unscreer.ed

energies curves. CBI results for Z=2 are also shown.

Stopping power dE/dx (a.u.) at Ne=1025/cm3and

various temperatures (Maynard et.al. 1982).
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