RATE COEFFICIENTS
FOR THE ELECTRON-IMPACT EXCITATIONS
OF C-LIKE IONS

Y. ITIKAWA

INSTITUTE OF PLASMA PHYSICS
NAGOYA UNIVERSITY

NAGOYA, JAPAN
RATE COEFFICIENTS FOR THE ELECTRON-IMPACT EXCITATIONS OF C-LIKE IONS

Yukikazu ITIKAWA*

Institute of Plasma Physics, Nagoya University
Chikusa-ku, Nagoya 464, Japan

March 1985

*Permanent address: The Institute of Space and Astronautical Science
Meguro-ku, Tokyo 153, Japan
This document is prepared as a preprint of compilation of atomic data for fusion research sponsored fully or partly by the IPP/Nagoya University. This is intended for future publication in a journal or will be included in a data book after some evaluations or rearrangements of its contents. This document should not be referred without the agreement of the authors. Enquiries about copyright and reproduction should be addressed to Research Information Center, IPP/Nagoya University, Nagoya, Japan.
Abstract

Cross sections have been surveyed for electron-impact excitations of C-like ions. 'Best' values of effective collision strengths are shown graphically for O III, Ne V, Mg VII, Si IX, and Ca XV over a wide range of electron temperature. They are based on the R-matrix calculation supplemented with the values obtained by distorted-wave-type methods.
1. Introduction

Electron-impact excitation of atomic ions is a fundamental process in a high-temperature plasma. Although there are very few experimental data, many theoretical values are available for the excitation cross section. Those theoretical data, however, scatter through literature and are often fragmentary. It is important to compile the data and assess their reliability. Such a task has been performed on carbon and oxygen ions and the result has been published.1) As an extension of the previous work, a collection and evaluation of the data on C-like ions is reported in the present paper.

Because of astrophysical interest, a large number of calculations have been made on the electron-impact excitation of C-like ions. They enable us to make a rather systematic study of the excitation process along the isoelectronic sequence. Before starting the present work, we had hoped to derive a universal formula for the excitation cross section or rate coefficient applicable to ions with any nuclear charge. It turned out, however, that complicated structure due to the resonance effect makes it very difficult. In the present report, rate coefficients for several excitation processes are shown graphically only for individual species. Although a crude interpolation can be made, no universal form has been derived.
2. Data sources

An elaborate calculation based on the R-matrix theory has been carried out for O III, Ne V, Mg VII, Si IX and Ca XV. A distorted-wave type calculation using the UCL code has been made for more than ten ion species. Those two sets of data, listed in Table I, have been used in the present study. The R-matrix calculation is believed to be most accurate. The calculation, however, is often restricted to the region of lower electron energy. For the data to be more comprehensive and more applicable, it is desirable to extend them to higher energies. The extension is made here with the help of the values obtained by the DW method, which is more reliable at the higher electron energies. There are many other calculations for C-like ions, but they are less reliable or very fragmentary.

The cross sections calculated with the UCL-DW code are mostly in fair agreement with the R-matrix result at least at the higher energies where a comparison can be made (for details, see the original literature of the R-matrix calculation). In the case of Ca XV, however, a large discrepancy is found for the excitations of 2s2p3 1Do and 1Po. In that case the R-matrix values are extended by using our own DW calculation, which gives a very good agreement with the R-matrix result at the energies higher than the twice the excitation potential. In the DW calculation, use has been made of the same target-wave-function as in the R-matrix calculation.
3. Rate coefficients

Because of the complicated structure due to the resonance effect, it is almost impossible to show cross sections or collision strengths in a graphical form. Instead we present here an effective collision strength for a transition \(i \rightarrow j\)

\[
\gamma_{ij} = y \ e^{y} \int_{1}^{\infty} dx \ \Omega_{ij}(x) \ e^{-yx} \quad \text{(1)}
\]

as a function of

\[
y = \frac{\Delta E_{ij}}{T} \quad \text{(2)}
\]

Here \(\Omega_{ij}\) is the collision strength, \(T\) is the electron temperature, and \(\Delta E_{ij}\) is the transition energy. The corresponding rate coefficient is given by

\[
R_{ij} \text{(cm}^3\text{sec}^{-1}) = \frac{8.010 \times 10^{-8}}{\omega_i \sqrt{T \text{(ev)}}} \ e^{-y} \gamma_{ij} \quad \text{(3)}
\]

where \(\omega_i\) is the statistical weight of the initial state.

It should be noted that the Maxwellian distribution has been assumed for the electron velocity.

The excitations considered are

\[
\begin{align*}
2s^22p^23p & \rightarrow 2s^22p^21D, 1S \\
2s2p^35s^0, 3D^0, 3P^0, 1D^0, 3S^0, 1P^0 &
\end{align*}
\]
The excitation energy, ΔE_{ij}, for the transitions is listed in Table II. Owing to the difficulty in the treatment of higher partial waves, the R-matrix method was applied first to the spin-forbidden transitions. The method is now being extended to allowed transitions, but the calculation is still in progress. The two types of the transitions, therefore, are shown separately in the following.

(1) Spin-forbidden transitions

Except for 0^2 and the excitations of 1^p_0 and 1^D_0 states of Ca XV, the effective collision strength obtained by the R-matrix method is supplemented with the UCL-DW calculation. The most of the DW calculations reported give only the collision strengths at three electron energies. To calculate γ from them, we fit the collision strengths by a formula

$$\Omega_{ij}(x) = A_{ij} + \frac{B_{ij}}{x + \xi_{ij}} + \frac{C_{ij}}{(x + \xi_{ij})^2}$$

(4)

Here x is the electron energy in the threshold units, A, B, C are fit parameters depending on the nuclear charge, and ξ is a parameter appropriately chosen for each transition but independent of Z. With the use of the formula, γ can be calculated analytically. As has been mentioned in the last section, our own DW calculation is applied to produce Ω_{ij} for the excitations.
of $^1D^0$, $^1P^0$ of Ca XV. They are also fitted by the above formula. For O III, we have modified our previous recommended values by taking account of the recent R-matrix result.

The resulting effective collision strengths are shown in Figs. 1 - 5. Each line in the figures has a short vertical bar on it. This indicates the boundary on the right side of which the R-matrix values are plotted. In the case of Mg VII, the R-matrix calculation has been made over a wide range of electron energy so that all the curves of γ are based solely on that. A little arrow shows the position of the temperature at which the particular ion has its maximum population in the steady-state ionization balance. There are a number of calculations of the ionization balance giving somewhat different results. The arrow in the figures should be taken as a rough measure of the temperature of importance in the case of ionization equilibrium. A departure from the ionization equilibrium is often seen in the case of fusion plasma, and hence rate coefficients are needed for a wide range of temperature.

(2) Allowed transitions

For allowed transitions, the R-matrix calculation has been done only for O III, Ne V and Mg VII so far. The results of the calculation are plotted in Figs. 6 - 8. Our previous recommended values for O III are modified slightly on the consideration of the recent R-matrix calculation and the
resulting values are presented in the figures. For a comparison and to estimate \(\gamma \) for Si IX and Ca XV, the effective collision strengths calculated from the DW result are also shown. For the allowed transitions, the collision strengths of the DW calculation are fitted by a formula

\[
\Omega_{ij}(x) = A_{ij} + \frac{B_{ij}}{x + \xi_{ij}} + C_{ij} \ln x \quad (5)
\]

instead of Eq(4). As in the case of spin-forbidden transitions, a small arrow indicates the temperature at which each ion has its maximum population in the calculation of ionization balance.\textsuperscript{22)

Because no experimental data are available, it is difficult to assess the accuracy of the present effective collision strengths. From a general consideration of the theoretical methods, we conclude that the values indicated by solid lines in the figures are accurate probably within an error of 20\%.
Acknowledgements

The author would like to thank Dr. K. M. Aggarwal for making his results of the R-matrix calculation available prior to publication. This work of data compilation and evaluation has been done as a part of the Coordinated Research Program on Atomic Collision Data for Diagnostics of Magnetic Fusion Plasmas organized by the International Atomic Energy Agency.
References

21) Y. Itikawa and K. Sakimoto: to be published

Table I. List of calculations using the R-matrix method and the UCL-DW code. Numbers are referred to the reference list.

<table>
<thead>
<tr>
<th>Element</th>
<th>R-matrix method</th>
<th>DW(UCL) method</th>
</tr>
</thead>
<tbody>
<tr>
<td>O III</td>
<td>7, 10</td>
<td>15</td>
</tr>
<tr>
<td>Ne V</td>
<td>2, 6, 8, 11</td>
<td>17</td>
</tr>
<tr>
<td>Mg VII</td>
<td>9, 11</td>
<td>12</td>
</tr>
<tr>
<td>Si IX</td>
<td>3, 4, 8</td>
<td>12</td>
</tr>
<tr>
<td>S XI</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Ar XIII</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Ca XV</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Ti XVII</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Mn XX</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Fe XXI</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Kr XXXI</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
Table II. Transition energies in eV for the processes considered. The numbers in parentheses are the corresponding values in the temperature units in 10^4 K.

<table>
<thead>
<tr>
<th></th>
<th>O III</th>
<th>Ne V</th>
<th>Mg VII</th>
<th>Si IX</th>
<th>Ca XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2s22p2 3p \rightarrow 2s22p2 1D</td>
<td>2.49</td>
<td>3.66</td>
<td>4.83</td>
<td>6.02</td>
<td>10.26</td>
</tr>
<tr>
<td></td>
<td>(2.89)</td>
<td>(4.25)</td>
<td>(5.60)</td>
<td>(6.99)</td>
<td>(11.91)</td>
</tr>
<tr>
<td>2s22p2 1S</td>
<td>5.33</td>
<td>7.83</td>
<td>10.31</td>
<td>12.82</td>
<td>21.30</td>
</tr>
<tr>
<td></td>
<td>(6.19)</td>
<td>(9.09)</td>
<td>(11.96)</td>
<td>(14.88)</td>
<td>(24.72)</td>
</tr>
<tr>
<td>2s2p3 5So</td>
<td>7.48</td>
<td>10.93</td>
<td>12.98</td>
<td>18.05</td>
<td>27.41</td>
</tr>
<tr>
<td></td>
<td>(8.68)</td>
<td>(12.68)</td>
<td>(15.06)</td>
<td>(20.95)</td>
<td>(31.81)</td>
</tr>
<tr>
<td>2s2p3 3Do</td>
<td>14.86</td>
<td>21.71</td>
<td>28.63</td>
<td>35.69</td>
<td>58.61</td>
</tr>
<tr>
<td></td>
<td>(17.24)</td>
<td>(25.19)</td>
<td>(33.22)</td>
<td>(41.42)</td>
<td>(68.01)</td>
</tr>
<tr>
<td>2s2p3 3So</td>
<td>17.63</td>
<td>25.72</td>
<td>33.84</td>
<td>42.11</td>
<td>69.24</td>
</tr>
<tr>
<td></td>
<td>(20.46)</td>
<td>(29.85)</td>
<td>(38.92)</td>
<td>(48.87)</td>
<td>(80.35)</td>
</tr>
<tr>
<td>2s2p3 1Do</td>
<td>23.17</td>
<td>33.45</td>
<td>43.69</td>
<td>54.06</td>
<td>87.27</td>
</tr>
<tr>
<td></td>
<td>(26.89)</td>
<td>(38.81)</td>
<td>(50.70)</td>
<td>(62.73)</td>
<td>(101.27)</td>
</tr>
<tr>
<td>2s2p3 3So</td>
<td>24.42</td>
<td>34.54</td>
<td>44.65</td>
<td>54.87</td>
<td>87.17</td>
</tr>
<tr>
<td></td>
<td>(28.34)</td>
<td>(40.08)</td>
<td>(51.81)</td>
<td>(63.67)</td>
<td>(101.16)</td>
</tr>
<tr>
<td>2s2p3 1po</td>
<td>26.07</td>
<td>37.57</td>
<td>48.99</td>
<td>60.55</td>
<td>97.77</td>
</tr>
<tr>
<td></td>
<td>(30.25)</td>
<td>(43.60)</td>
<td>(56.85)</td>
<td>(70.27)</td>
<td>(113.46)</td>
</tr>
</tbody>
</table>
Fig. 1. Effective collision strengths for the transition
\[2s^2 2p^2 3p \rightarrow 2s^2 2p^2 1D \] in O III, Ne V, Mg VII, Si IX and Ca XV by electron collisions. The horizontal scale denotes the inverse temperature in the units of transition energy. A small vertical bar on each curve shows the boundary on the right side of which the R-matrix values are plotted. An arrow indicates the temperature at which the respective ion has its maximum population in the calculation of steady-state ionization balance.
Fig. 2. Same as Fig. 1, but for the transition $2s^2 2p^2 3p \rightarrow 2s^2 2p^2 1s$.
Fig. 3. Same as Fig. 1, but for the transition $2s^2 2p^2 3p \rightarrow 2s 2p^3 S^o$.
Fig. 4. Same as Fig. 1, but for the transition $2s^2 2p^2 3p \rightarrow 2s 2p^3 \, ^1D^o$.

$2s^2 2p^3 \, ^3P \rightarrow 2s 2p^3 \, ^1D^o$.
Fig. 5. Same as Fig. 1, but for the transition $2s^2 2p^2 \, ^2\!\!P \to 2s \, 2p \, ^3\!\!P^0$.

$2s^2 2p^2 \, ^2\!\!P \to 2s \, 2p \, ^3\!\!P^0$.
Fig. 6. Effective collision strengths for the transition
\[2s^2 2p^2 \, 3p \rightarrow 2s2p^3 \, 3D^0 \] in O III, Ne V, Mg VII, Si IX, and Ca XV
by electron collisions. The horizontal scale indicates
the inverse temperature in the units of transition energy.
The solid lines are the results of the R-matrix method
(Ne V and Mg VII) or the revised recommended values (O III,
see text). The dashed lines show the results based on the
distorted-wave calculation. Arrows denote the temperature at
which the respective ion has its maximum population in the
calculation of steady-state ionization balance.
Fig. 7. Same as Fig. 6, but for the transition $2s^22p^2\ ^3P \rightarrow 2s2p^3\ ^3P^o$.

\[2s2p^3\ ^3P^o\]
Fig. 8. Same as Fig. 6, but for the transition $2s^2 2p^2 3p \rightarrow 2s 2p^3 3^0$.
LIST OF IPPJ-AM REPORTS

IPPJ-AM-1* “Cross Sections for Charge Transfer of Hydrogen Beams in Gases and Vapors in the Energy Range 10 eV—10 keV”
H. Tawara (1977) [Published in Atomic Data and Nuclear Data Tables 22, 491 (1978)]

T. Kato (1977)

IPPJ-AM-3 “Grottrian Diagrams of Highly Ionized Iron FeVIII-FeXXVI”
K. Mori, M. Otsuka and T. Kato (1977) [Published in Atomic Data and Nuclear Data Tables 23, 196 (1979)]

IPPJ-AM-4 “Atomic Processes in Hot Plasmas and X-Ray Emission”
T. Kato (1978)

IPPJ-AM-5* “Charge Transfer between a Proton and a Heavy Metal Atom”
S. Hiraide, Y. Kigoshi and M. Matsuzawa (1978)

IPPJ-AM-6* “Free-Free Transition in a Plasma —Review of Cross Sections and Spectra—”
T. Kato and H. Narumi (1978)

IPPJ-AM-7* “Bibliography on Electron Collisions with Atomic Positive Ions: 1940 Through 1977”
K. Takayanagi and T. Iwai (1978)

IPPJ-AM-8 “Semi-Empirical Cross Sections and Rate Coefficients for Excitation and Ionization by Electron Collision and Photoionization of Helium”
T. Fujimoto (1978)

IPPJ-AM-9 “Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy Range from 0.1 eV to 10 MeV I. Incidence of He, Li, Be, B and Their Ions”
Kazuhiko Okuno (1978)

IPPJ-AM-10 “Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy Range from 0.1 eV to 10 MeV II. Incidence of C, N, O and Their Ions”
Kazuhiko Okuno (1978)

IPPJ-AM-11 “Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy Range from 0.1 eV to 10 MeV III. Incidence of F, Ne, Na and Their Ions”
Kazuhiko Okuno (1978)

IPPJ-AM-12* “Electron Impact Excitation of Positive Ions Calculated in the Coulomb-Born Approximation —A Data List and Comparative Survey—”
S. Nakazaki and T. Hashino (1979)

IPPJ-AM-13 “Atomic Processes in Fusion Plasmas — Proceedings of the Nagoya Seminar on Atomic Processes in Fusion Plasmas Sept. 5-7, 1979”
Ed. by Y. Itikawa and T. Kato (1979)

IPPJ-AM-14 “Energy Dependence of Sputtering Yields of Monatomic Solids”
IPPJ-AM-15 “Cross Sections for Charge Transfer Collisions Involving Hydrogen Atoms”
Y. Kaneko, T. Arikawa, Y. Itikawa, T. Iwai, T. Kato, M. Matsuzawa,
IPPJ-AM-16 “Two-Centre Coulomb Phaseshifts and Radial Functions”
IPPJ-AM-17 “Empirical Formulas for Ionization Cross Section of Atomic Ions for
Electron Collisions —Critical Review with Compilation of Experimental Data—”
IPPJ-AM-18 “Data on the Backscattering Coefficients of Light Ions from Solids”
IPPJ-AM-19 “Recommended Values of Transport Cross Sections for Elastic Collision and
Total Collision Cross Section for Electrons in Atomic and Molecular Gases”
M. Hayashi (1981)
IPPJ-AM-20 “Electron Capture and Loss Cross Sections for Collisions between Heavy
Ions and Hydrogen Molecules”
(1981)
IPPJ-AM-21 “Surface Data for Fusion Devices — Proceedings of the U.S—Japan Work-
shop on Surface Data Review Dec. 14-18, 1981”
IPPJ-AM-22 “Desorption and Related Phenomena Relevant to Fusion Devices”
Ed. by A. Koma (1982)
IPPJ-AM-23 “Dielectronic Recombination of Hydrogenic Ions”
Through 1982 (Supplement to IPPJ-AM-7)”
Y. Itikawa (1982)
IPPJ-AM-25 “Bibliography on Ionization and Charge Transfer Processes in Ion-Ion
Collision”
H. Tawara (1983)
IPPJ-AM-26 “Angular Dependence of Sputtering Yields of Monatomic Solids”
Y. Yamamura, Y. Itikawa and N. Itoh (1983)
IPPJ-AM-27 “Recommended Data on Excitation of Carbon and Oxygen Ions by Electron
Collisions”
(1983)
IPPJ-AM-28 “Electron Capture and Loss Cross Sections for Collisions Between Heavy
Ions and Hydrogen Molecules (Up-dated version of IPPJ-AM-20)
IPPJ-AM-29 "Bibliography on Atomic Processes in Hot Dense Plasmas"

IPPJ-AM-30 "Cross Sections for Charge Transfers of Highly Ionized Ions in Hydrogen Atoms (Up-dated version of IPPJ-AM-15)"

IPPJ-AM-31 "Atomic Processes in Hot Dense Plasmas"

IPPJ-AM-32 "Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic Solids"

Ed. by H. Tawara (1983)

IPPJ-AM-34 "Dependence of the Backscattering Coefficients of Light Ions upon Angle of Incidence"

IPPJ-AM-36 "Equilibrium Charge State Distributions of Ions (Z ≥ 4) after Passage through Foils – Compilation of Data after 1972"
K. Shima, T. Mikumo and H. Tawara (1985)

IPPJ-AM-37 "Ionization Cross Sections of Atoms and Ions by Electron Impact"

IPPJ-AM-38 "Rate Coefficients for the Electron-Impact Excitations of C-like Ions"
Y. Itikawa (1985)

Available upon request to Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan, except for the reports noted with *.