THE COLLECTED PAPERS OF NICE PROJECT/IPP, NAGOYA

Edited by
Hiroyuki TAWARA

Institute of Plasma Physics, Nagoya University
Chikusa-ku, Nagoya 464, Japan

September 1985
This document is prepared as a preprint of compilation of atomic data for fusion research sponsored fully or partly by the IPP/Nagoya University. This is intended for future publication in a journal or will be included in a data book after some evaluations or rearrangements of its contents. This document should not be referred without the agreement of the authors. Enquiries about copyright and reproduction should be addressed to Research Information Center, IPP/Nagoya University, Nagoya, Japan.
Preface

This volume is a collection of the recent papers which the NICE-1 (Naked Ion Collision Experiment) group, an atomic collision study group organized at the Institute of Plasma Physics, Nagoya University, has published in International Journals and Books.

The Editor of the present volume would like to thank the Editors of the following Journals and Books for their permission of reproducing our papers which have been published in their Journals:

Journal of Physics B (papers 2,5,6,7,12,18)
Journal of Physical Society of Japan (papers 10,14,16)
Nuclear Instruments and Methods in Physical Research (papers 1,9,17)
Physics of Electronic and Atomic Collisions (papers 3,15)
Physica Scripta (paper 11)
Physical Review (papers 4,8,13)

日本物理学会誌

H. Tawara
Editor

Contents

I. FOREWORD ... 1

II. List of Publications and Talks 5

III. Reprints of Papers Published 19
I. FOREWORD

This is a collection of papers on the work of the NICE project at the Institute of Plasma Physics (IPP), Nagoya University from 1977 through 1984.

In 1977, Y. Kaneko and T. Iwai were invited to be Guest Professors of the IPP and to make experiments on atomic processes involving highly-charged ions, which were supposed to be extremely important in studies of high temperature plasmas. A research group was organized and several researchers were invited from various institutions in the country to take part in the project. The primary purpose of the project was not only to produce A-M data useful for the nuclear fusion research, but also to deepen our understanding of the basic physics of the atomic processes involving highly-charged ions at relatively low energies. In order to obtain clear conclusions, it was most desirable to make collision experiments using beams of fully-stripped or nearly fully-stripped ions with a narrow energy spread. The project, accordingly, was named NICE (Naked Ion Collision Experiments).

In the first stage of the project, an ion source of EBIS type with a conventional magnet was built and some preliminary experiments were made. In the second stage, an EBIS type ion source using a super conducting magnet was built. A beam of fully-stripped oxygen ions O^{8+} was successfully extracted from the source in 1980, and the source was named NICE-1. Since then, systematic and exhaustive studies on the electron
capture processes by various highly-charged ions from He atoms have been made through cross section measurements and by means of translational energy spectroscopy. The charge state of ions studied has reached up to as high as 41 by the end of the project.

Last spring, the NICE project closed its first phase as the Guest Research Program of the IPP. The whole apparatus including the ion source NICE-1 is still running in a good shape, but the project has been reduced in its scale and taken over to the Collaboration Program of the IPP. In commemoration of the collaboration of the NICE group and for the convenience of reviewing the work of NICE, this collection of papers was edited by H. Tawara as a part of IPPJ-AM series. The names of the people who have taken part in this project are listed below in an alphabetical order:

Toshihiko Hino (IPP+Hamamatsu Photonics Co.)
Hironobu Imamura (Kyushu University+Kyushu Electric Power Co.)
Tsuruji Iwai (Osaka University + Kansai Medical University)
Yozaburo Kaneko (Tokyo Metropolitan University)
Masahiro Kimura (Osaka University)
Nobuo Kobayashi (Tokyo Metropolitan University)
Atsushi Matsumoto (IPP)
Shunsuke Ohtani (IPP)
Kazuhiko Okuno (Tokyo Metropolitan University)
Hiroyuki Tawara (Kyushu University + IPP)
Seiji Tsurubuchi (Osaka University + Tokyo University of Agriculture and Technology)
Tsutomu Watanabe (The University of Tokyo + The Institute of Physical and Chemical Research, RIKEN).

It was really an enjoyable collaboration. We appreciate very much the wonderful team work brought into existence by all members of the group, and believe so do they. S. Ohtani has filled the role of secretary of the group throughout the project.

On behalf of the members of the NICE group, we appreciate the whole staff of the Institute of Plasma Physics for their kind support extended to the project. Especially, we would like to express our sincere appreciation to Professor Emeritus Kazuo Takayama who invited us to start this project when he was the Director of the Institute, and to the Former Director Professor Emeritus Hidetake Kakihana who encouraged our group throughout the work. We thank Mr. Genji Takamatsu and his company for their skillful machining of the ion source. Finally, we thank all wives of the NICE members for their tolerance of frequent neglect of home by their husbands who stayed out of homes often for the three consecutive nights, supposedly due to the experiments, over a long period of the project.

January 11, 1985

Yozaburo Kaneko
Tsuruji. Iwai
II. List of Publications and Talks

II-1. Original Papers

1. Some Characteristics of an Electron Beam Ion Source:
 and H. Tawara

2. Symmetric Resonance Multiple Charge Transfer of Ne\(^{q+}\) and Ar\(^{q+}\) (q ≥ 4):
 and H. Tawara

3. Cross Sections for One-Electron Capture from He by Highly Stripped Ions of C, N, O, F, Ne and S below 1 keV/amu:
 and S. Takagi
 Physics of Electronic and Atomic Collision.

4. Cross Section for One-Electron Capture by Highly Stripped Ions of B, C, N, O, F, Ne and S from He below 1 keV/amu:
 and S. Tsurubuchi
5. Observation of Electron Capture into Selective State
by Fully Stripped Ions from He Atom:
S. Ohtani, Y. Kaneko, M. Kimura, N. Kobayashi,
T. Iwai, A. Matsumoto, K. Okuno, S. Takagi,
H. Tawara and S. Tsurubuchi

6. Two-Electron Capture into Autoionizing States of
N^{5+} (3\ell 3\ell ') and O^{5+} (1s3\ell 3\ell ') in Collisions of
N^{7+} and O^{7+} with He:
S. Tsurubuchi, T. Iwai, Y. Kaneko, M. Kimura,
N. Kobayashi, S. Ohtani, K. Okuno, A. Matsumoto,
S. Takagi and H. Tawara

7. The (n,\ell) Distributions in Electron Capture Reactions
for C^{3+}, N^{4+} and O^{5+} Ions Colliding with He:
M. Kimura, T. Iwai, Y. Kaneko, N. Kobayashi,
A. Matsumoto, S. Ohtani, K. Okuno, S. Takagi,
H. Tawara and S. Tsurubuchi

8. Energy-Spectroscopic Studies of Electron-Capture
Processes by Low-Energy, Highly Stripped C, N, and O
ions from He:
K. Okuno, H. Tawara, T. Iwai, Y. Kaneko,
M. Kimura, N. Kobayashi, A. Matsumoto, S. Ohtani,
S. Takagi and S. Tsurubuchi

9. Gain Characteristics of Micro-Channel Plate and
Channel-Electron Multiplier for Multiply Charged
Ions:
S. Takagi, T. Iwai, Y. Kaneko, M. Kimura,
N. Kobayashi, A. Matsumoto, S. Ohtani, K. Okuno,
H. Tawara and S. Tsurubuchi
10. Measurement of Relative Population between B^{2+} (2s) and B^{2+} (2p) in Electron Capture Collision of B^{2+} with He:

11. Recent Activities at NICE Nagoya:

S. Ohtani

12. The Dependence on R_c of Cross Sections for One-Electron Capture by S^{11+}, S^{13+} and Kr^{q+} (q=7-25) Ions from He Atoms:

13. Energy-Spectroscopic Studies of Electron Capture Processes by Low-Energy, Highly Stripped F and Ne Ions in Collisions with He atoms:

14. Landau-Zener Model Calculations of One-Electron Capture from He Atoms by Highly Stripped Ions at Low Energies:

15. One-Electron Capture by Highly Stripped Ions from He Atoms—Final State Analysis—:

S. Ohtani

Electronic and Atomic Collisions (Ed. by J. Eichler, I. V. Hertel and N. Stolterfoht, North-Holland, 1984) p.353

16. Translational-Energy Spectroscopy of One-Electron Capture Processes in He2+ -H2 and -N2 Collisions:

17. Electron Capture in Iq+ (q=10-41) + He Collisions at Low Energies:

18. Electron Capture Processes of Iq+ Ions with Very High Charge State (41≤q≤10) in Collisions with He Atoms:

II-2. Talks in International Conferences

1. NICE Project at IPP:
 Y. Kaneko
 Invited Talk at the Nagoya Seminar on Atomic Processes in Fusion Plasmas, Nagoya, 1979

2. Cross Sections for One-Electron Capture from He by Highly Stripped Ions of C, N, O, F and Ne below 1 keV/amu:
 Invited Talk at XII International Conference on Physics of Electronic and Atomic Collisions (ICPEAC), Gatlinburg, 1981

3. Recent Activities at NICE Nagoya:
 S. Ohtani
 Invited Talk at the Symposium on Production and Physics of Highly Charged Ions, Stockholm, 1982

4. Electron Transfer Processes of Highly Ionized Heavy Ions Investigated Through Energy Loss Spectroscopy:
 Symposium on Production and Physics of Highly Charged Ions, Stockholm, 1982

5. Some Trends in Highly Ionized Ion-Atom Collision Experiments: Summary Talk
 H. Tawara
 Symposium on Production and Physics of Highly Charged Ions, Stockholm, 1982
6. Experimental Studies of Electron Capture Processes by Low Energy, Highly Stripped Heavy Ions:
 H. Tawara, T. Iwai, Y. Kaneko, M. Kimura,
 N. Kobayashi, A. Matsumoto, S. Ohtani, K. Okuno,
 S. Takagi and S. Tsurubuchi
 Invited Talk at U.S.-Japan Cooperative Seminar of Physics of Highly Ionized Ions Produced in Heavy Ion Collisions, Hawaii, 1983

7. Final-State Analysis of Electron Capture Processes in Collision of Highly Stripped C, N, and O Ions with He atoms:
 M. Kimura, T. Iwai, Y. Kaneko, N. Kobayashi,
 A. Matsumoto, S. Ohtani, K. Okuno, S. Takagi,
 H. Tawara and S. Tsurubuchi
 XIII ICPEAC, Berlin, 1983

8. Final-State Analysis of Electron Capture Processes in Collision of Highly Stripped F and Ne Ions with He atoms:
 H. Tawara, T. Iwai, Y. Kaneko, M. Kimura,
 N. Kobayashi, A. Matsumoto, S. Ohtani, K. Okuno,
 S. Takagi and S. Tsurubuchi
 XIII ICPEAC, Berlin, 1983

9. One-Electron Capture by Highly Stripped Ions from He Atoms (Final-State Analysis):
 S. Ohtani
 Invited Talk at XIII ICPEAC, Berlin, 1983

10. Electron Capture by Slow Multi-Charged Ions Colliding with Neutral Atoms:
 Y. Kaneko
 Invited Talk at the Asia Pacific Physics Conference, Singapore, 1983
 Y. Kaneko
 2nd IAEA Coordinated Research Program
 Meeting on Atomic Collision Data for Diagnostics of Magnetic Fusion Plasmas,
 Nagoya, 1983.

12. One-Electron Capture Processes of Very Highly Ionized $^{q+}(q \leq 41)$ Ions in Collisions with He Atoms at Low Energies:
 H. Tawara, T. Iwai, Y. Kaneko, M. Kimura,
 N. Kobayashi, A. Matsumoto, S. Ohtani, K. Okuno,
 S. Takagi and S. Tsurubuchi

13. One-Electron Capture Processes by Highly Charged Ions from He:
 Y. Kaneko
 US-Japan Workshop on Tokamak Diagnostics by X-Ray, VUV and Optical Radiations, Nagoya,
 1984.

14. Electron Capture by Slow and Highly Stripped Iodine form He:
 M. Kimura
 International Conference on the Physics of Electronic and Atomic Collisions, Stanford,
 1985.

15. Energy-Spectroscopic Studies of Electron Capture Processes of Very High Charge at Low Energies:
 H. Tawara, T. Iwai, Y. Kaneko, M. Kimura,
 N. Kobayashi, A. Matsumoto, S. Ohtani, K. Okuno,
 S. Takagi and S. Tsurubuchi
 Invited Talk at Satellite Meeting on Atomic Physics of Highly Charged Ions, Stanford,
 1985.
II-3. Progress Reports

1. On the NICE Project:
 Y. Kaneko, T. Iwai, S. Ohtani, K. Okuno,
 N. Kobayashi, S. Tsurubuchi, M. Kimura, H. Tawara
 and H. Imamura
 Atomic Collision Research in Japan-Progress
 Report 4, 117 (1978)

2. Experimental Study on Multiply-Charged Ion
 Collisions:
 A. Matsumoto, S. Ohtani, S. Tsurubuchi, K. Okuno,
 T. Iwai and Y. Kaneko
 Atomic Collision Research in Japan-Progress
 Report 4, 78 (1978)

3. Study of Charge Transfer Processes Involving Multiply
 Charged Ions:
 A. Matsumoto, M. Kimura, S. Tsurubuchi, T. Iwai,
 S. Ohtani, H. Tawara, Y. Itoh, M. Namiki,
 T. Koizumi, N. Kobayashi and K. Okuno
 Nagoya Univ.) p.118

4. Cross Sections for One-Electron Capture from He by
 Highly Stripped Ions of Be, B, C, N, O, F, Ne and S
 below 1 keV/amu:
 Y. Kaneko, T. Iwai, S. Ohtani, K. Okuno,
 N. Kobayashi, S. Tsurubuchi, M. Kimura, H. Tawara
 and S. Takagi
 Atomic Collision Research in Japan-Progress

5. The Nagoya EBIS (NICE-1):
 T. Iwai, Y. Kaneko, K. Okuno, N. Kobayashi,
 S. Tsurubuchi, M. Kimura, H. Tawara, S. Takagi and
 S. Ohtani
 Nagoya Univ.) p.116
6. Cross Sections for One-Electron Capture from He by Highly Stripped Ions of C, N, O, F and Ne below 1 keV/amu:

7. Observation of Electron Capture into Selective State by Multicharged C, N and O Ions:

8. Recent Activities in NICE:

9. Energy-Spectroscopic Studies of Electron Capture Processes in Collisions of Highly Stripped Ions:

10. NICE Experiments:
11. Electron Capture Processes of Krq^+ (7≤q≤25) and Iq^+ (10≤q≤41) Ions in Collisions with He Atoms:
 S. Ohtani, T. Iwai, Y. Kaneko, M. Kimura,
 N. Kobayashi, A. Matsumoto, K. Okuno, S. Takagi,
 H. Tawara and S. Tsurubuchi

12. Electron Capture Processes of Krq^+ (7≤q≤25) and Iq^+ (10≤q≤41) Ions in Collisions with He Atoms:
 T. Iwai, Y. Kaneko, N. Kobayashi, K. Okuno,
 M. Kimura, S. Takagi, S. Tsurubuchi, A. Matsumoto,
 H. Tawara and S. Ohtani

13. Dependence of the Gain of Micro-Channel Plate on Incident Charge State:
 M. Kimura, S. Takagi, T. Iwai, Y. Kaneko,
 N. Kobayashi, K. Okuno, S. Tsurubuchi,
 A. Matsumoto, S. Ohtani and H. Tawara

14. One-Electron Capture Processes by Highly Charged Ions from Helium:
 Y. Kaneko

15. electron Capture by Low Multi-Charged Ions Colliding with Neutral Atoms:
 Y. Kaneko
Ⅱ-4．邦文誌報告

1. N I C E 計画の経過報告
 金子洋三郎、N I C E グループ
 核融合研究 別冊 42-3, 47 (1979)

2. N I C E 計画とそれによる多価イオンの共鳴電荷移行反応の研究
 金子洋三郎、岩井鶴二、大谷俊介
 核融合研究 43-3, 23 (1980)

3. N I C E 実験について
 大谷俊介
 核融合研究 45-1, 61 (1981)

4. 低エネルギー領域における多価イオンの電荷移行
 奥野和彦
 核融合研究 46-13, 85 (1981)

5. 電子ビームイオン源用水平設置超電導コイルおよびクライオスタットの製作
 小林信夫、大谷俊介、金子洋三郎、岩井鶴二、奥野和彦、鶴岡誠二、
 木村正広、佐野之、日野利彦
 名古屋大学プラズマ研究所資料技術報告 IPPJ-DT-84
 (1981)

6. 多価イオンの一電子捕獲断面積の荷数依存に見られる振動
 木村正広
 日本物理学会誌 37, 763 (1982)

7. 多価イオン (q ≤ 41) による一電子捕獲
 岩井鶴二
 日本物理学会誌 40, 213 (1985)
1．EBIS形高電離重イオン源－NICE計画：
金子洋三郎、奧野和彦、小林信夫、大谷俊介、岩井鶴二、鶴瀬誠二、
木村正広、今村博信、佐博之
第3回イオン源とその応用技術シンポジウム（東海大）
1979年2月19日

2．Ne^{q+}，Ar^{q+}（q≤4）の対称共鳴多重電荷移行：
金子洋三郎
物理学会 原子分子シンポジウム（北海道大学）1980年10月2日

3．多価イオン衝突実験とNICE計画：
金子洋三郎
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日

4．低エネルギー用EBIS型多価イオン源の原理と特性：
大谷俊介
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日

5．高電離イオンとHe衝突による電子捕獲全断面積：
小林信夫
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日

6．低エネルギー電子捕獲全断面積の荷数依存に見られる振動構造：
佐博之
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日

7．電子捕獲過程のイオン分光法による研究：
木村正広
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日
8. 特定準位への選択的電子捕獲:
奥野和彦
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日

9. 自動電離状態への二電子捕獲:
鶴淵誠二
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日

10. NICE計画の今後:
岩井鶴二
物理学会 原子分子シンポジウム（北海道大学）1982年10月2日

11. $K^q + \text{He} \quad (q = 10 \sim 25)$ における電子移行反応:
岩井鶴二、金子祥三郎、木村正広、小林信夫、松本淳、大谷俊介、
奥野和彦、高木祥示、倉博之、鶴淵誠二
物理学会（岡山大学）1983年10月11日

12. Landau-Zenerモデルによる多価イオンの電荷移行反応
木村正広、岩井鶴二、金子祥三郎、小林信夫、松本淳、大谷俊介、
奥野和彦、高木祥示、倉博之、鶴淵誠二
物理学会（九州大学）1984年4月3日

13. ヨウ素多価イオンの電荷移行反応:
木村正広、岩井鶴二、金子祥三郎、小林信夫、松本淳、大谷俊介、
奥野和彦、高木祥示、倉博之、鶴淵誠二
物理学会（九州大学）1984年4月3日

14. MCPゲインの特性の荷数（26 > q > 3）依存性:
高木祥示、岩井鶴二、金子祥三郎、木村正広、小林信夫、松本淳、
大谷俊介、奥野和彦、倉博之、鶴淵誠二
物理学会（九州大学）1984年4月3日

- 17 -
III. Reprints of Papers Published
SOME CHARACTERISTICS OF AN ELECTRON BEAM ION SOURCE

H. IMAMURA 1), Y. KANEKO 2), T. IWAI 3), S. OHTANI, K. OKUNO 2), N. KOBAYASHI 2)
S. TSURUBUCHI 4), M. KIMURA 5) and H. TAWARA 6)

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 18 August 1980 and in revised form 17 March 1981

Some characteristics of a medium-sized EBIS have been investigated in the continuous and pulsed operation modes. It is found that a 1 keV and 100 mA electron beams, H-like ions such as C5+, N6+ and O7+ as well as He-like ions are produced with intensities comparable to those of doubly ionized ions. A weak trace of naked carbon ions (C6+) is also seen in the spectra.

1. Introduction

In atomic collision physics, astrophysics and other fields of applications, the importance of collision processes between highly ionized heavy ions and atoms has recently been recognized. In particular, the impurity ions of heavy elements in a thermonuclear fusion plasma are expected to play a key role in cooling and disturbing a high temperature plasma and energy loss from the plasma. Therefore, cross sections for collision processes involving highly ionized ions are urgently required. Production mechanisms of such highly ionized ions in the ion sources are also closely related with atomic collision physics itself.

It seems that a Penning type ion source, which is commonly used as a heavy ion source, can not produce completely ionized heavy ions. On the other hand, an electron beam ion source (EBIS) [1,2] seems to be a good candidate for production of highly ionized and possibly naked heavy ions. In EBIS, highly ionized ions are produced mainly through successive impact ionization by energetic electrons which are confined with a strong axial magnetic field. A space charge potential well generated by these high density electron beams traps the ion radially. On the other hand, these ions are axially (along the electron beam flow direction) confined with the blocking electric potential applied to some electrodes until the ionization of ions in a desired charge state distribution is achieved.

In the present paper we describe the EBIS operation briefly and report some measurements of characteristics of prototype EBIS constructed to investigate the collision processes involving highly ionized heavy ions.

2. EBIS operation

By assuming that (1) the successive ionization processes by electron impact play a main role in ion production, (2) multiple electron ionization processes contribute negligibly to total ion production and (3) ion losses due to the diffusion and other processes are negligibly small, the ion production in EBIS is governed by the following equation:

$$\frac{dn_q}{dt} = n_{q-1} \sigma_{q-1,q} - n_q \sigma_{q,q+1}$$

where n_q is the ion density with charge $(q+)$, $\sigma_{q,q+1}$ is the ionization cross section from charge q to $(q+1)$ by electron impact and I is the ionization factor which is equal to product of electron current density and confinement time. The above equation can be
solved under such conditions that (a) the neutral gas atoms are continuously supplied and (b) the gas is injected under a pulsed mode. The calculated results for carbon ions are shown in Fig. 1 using Lotz’s empirical formula [3] to estimate the ionization cross sections. From these figures, it is found that the charge distributions are quite different in both operation modes. For the pulsed gas injection mode, the charge distribution of ions changes with the ionization factor and ions with each charge state have a maximum intensity at a particular value of the ionization factor and finally all ions become completely ionized (naked). On the other hand, for the continuous gas injection, the production of ions becomes equilibrated (dn_q/dI = 0) at large values of the ionization factor and their intensity ratios are given by n_q/n_q-1 = e_q-1.e_q/n_q at equilibrium. The normalized total ion density (Q = \Sigma q \cdot n_q/n_0; n_0 is the density of neutral atoms injected) becomes saturated for the pulsed gas injection, meanwhile this increases with I for the continuous gas injection.

3. Experimental setup

Fig. 2 shows a schematic drawing of our prototype EBIS (called PROTO-NICE) with a medium-sized ionization region of 40 cm. The electron gun is of Frost type [4] with about 3 μm perveance and operated under the condition of the Brillouin flow [5]. The cathode is concave with a 20 mm diameter. The diameter of electron beams at the waist was measured to be about 1 mm in diameter at 1 keV–100 mA and 2 kG at the center. The typical current density of the electron beam was estimated to be 10 A/cm². There are two differently functioning solenoids, both being water-cooled: One is the main coil for generating the magnetic field which confines the electron beam, the other is the compensation coil for forming a sharply rising magnetic field near the electron gun and the electron collector. Mu-metal sheets of 2 mm in thickness were used to shield the magnetic field at both ends. The magnetic field distribution near the gun is shown in Fig. 3. The magnetic field strength at the waist of the electron beams was more than half of its maximum field strength, and less than a few Gauss at the anode–cathode region. With this system, more than 99% of the electron beams emitted from the cathode (100–200 mA) could reach the electron collector electrode. Fourteen drift tubes made of 6 mm stainless steel cylinder, whose potentials can be independently varied, are used to control the operation modes of PROTO-NICE. The ions produced are extracted and accelerated to desired energies. The charge states of the ions are analyzed using the sector magnet and these ions are detected by continuous-type electron multiplier. The system was evacuated with one 450 l/s and two 100 l/s turbo-molecular pumps and its final vacuum reached 8 × 10⁻⁹ Torr measured at the end of the drift tubes.
Fig. 2. A schematic drawing of PROTO-NICE.

Fig. 3. Measured distribution of magnetic field near the electron with 2 mm thick μ-metal shield. The cross mark (x) shows the calculated position of the waist of the electron beam. (K: cathode, G: grid, A: anode.)

4. Results

The EBIS can be operated both in continuous or time-of-flight mode (continuous gas injection and continuous electron beam) and in confining or pulsed mode (pulsed gas injection and/or pulsed electron beam, or confinement by the blocking electrodes).

4.1. Continuous mode

In this operation mode, electron beams and also gas atoms (in the present case residual gases) were supplied continuously. No time-varying potentials were applied but all the potentials applied to the drift tubes were constant, and there was no gradient in their distribution along the drift tubes. A typical example of the charge distribution of residual gas ions produced in PROTO-NICE is shown in fig. 4 which was obtained under the condition of 1.3 keV/89 mA electron beams and 3×10^{-8} Torr vacuum. H-like ions were dominant.

Fig. 4. Typical spectrum of the charge distribution of residual gas ions from PROTO-NICE under the conditions that the electron beam intensity is 89 mA at 1.3 keV and the background pressure is 3×10^{-8} Torr.
ions such as C$^{5+}$, N$^{6+}$ and O$^{7+}$ ions can be seen in the same scale as those in doubly ionized ions (C$^{2+}$, N$^{2+}$ and O$^{2+}$ ions). It is also noteworthy to find in the expanded spectrum that naked carbon ions 13C$^{6+}$ ions ($m/e = 2.17$) are produced with an intensity of about 1/20 of 13C$^{5+}$ ions ($m/e = 2.60$). Therefore, it can be expected that some of 12C$^{6+}$, N$^{7+}$ and O$^{8+}$ ions are also produced in this PROTO-NICE, though it is impossible to distinguish these naked ions ($m/e = 2.0$ for these ions) from H$_2$ ions in the present analysing system.

In fig. 5 are shown ratios of ions which charge q^+ to doubly ionized ions. As clearly seen in fig. 5, He-like ions (C$^{4+}$, N$^{5+}$ and O$^{6+}$ ions) with two ls-shell electrons are quite intense (70 to 15%) relative to the doubly ionized ions.

In fig. 5 are also shown the calculated charge distributions for the carbon ions which are based upon the ionization factor of 0.1 A/cm2 · s. The calculation is in rough agreement with the observed charge distributions. This ionization factor corresponds to the ion confinement time of 10 ms in the present ion source. This is much longer than the thermal drift time of ions along the drift tubes and indicates that some confining potential wells are produced along the beam axis and that ions are trapped in these wells and ionized by successive collisions, resulting in enhancement of higher charge state components.

It is also interesting to compare ion yields in the Penning ion source and in PROTO-NICE. In typical PIGs, the ratios of N$^{3+}$/N$^{2+}$ and of N$^{4+}$/N$^{2+}$ are 0.3 and 0.02, respectively, while the ratios of N$^{3+}$/N$^{2+}$, N$^{4+}$/N$^{2+}$ and N$^{5+}$/N$^{2+}$ ions in PROTO-NICE are 0.65, 0.49 and 0.21, respectively. This can be understood from the fact that in PIGs highly ionized ions are produced mainly through multiple electron ionization processes in single collisions, whereas in PROTO-NICE the successive collision of single electron ionization processes is dominant under better confinement.

4.1.1. Pressure dependence

In fig. 6 is shown the dependence of ion production on the gas pressure in the source. The residual gas pressure was controlled by adjusting the opening of the vacuum valves. Production of N$^{3+}$ and N$^{4+}$ ions depends weakly on the gas pressure, while those of He-like and H-like ions (N$^{5+}$ and N$^{6+}$ ions) are strongly dependent on the gas pressure. For example, the intensities of N$^{6+}$ ions increased almost one order of magnitude when the gas pressure decreases only by a factor 2 (from 6×10^{-8} to 3×10^{-8} Torr). This clearly indicates the importance of high vacuum in the source in order to produce highly ionized ions, particularly, He-like, H-like and naked ions in the EBIS.

4.1.2. Electron energy dependence

The production of N$^{6+}$ ions also shows a strong dependence on the ionizing electron energy, increasing one order of magnitude when the electron energy increases from 1 keV to 1.5 keV. This is quite understandable by considering the ionization potential of

![Image](image.png)

Fig. 5. Relative measured charge distributions of C, N and O ions under the same conditions as in fig. 4. The dotted line shows the calculated results for carbon ions with an ionization factor of 0.1 A/cm2 · s.

![Image](image.png)

Fig. 6. Pressure dependence of the relative charge distribution of the nitrogen ions.
electrons in N⁵⁺ ions (E_p = 524 eV) and the fact that the maximum ionization cross sections occur at about 3–4 times E_p.

4.1.3. Effect of the ion drift motion

To investigate the effect of the mobility of ions in the drift tubes which changes the retaining time of the ions, the variation of ion intensity was measured as a function of the potential gradient along the drift tubes. The results are shown in fig. 7. It is interesting to note the sharp drop of the intensity of highly ionized ions above 8 V. Particularly, the decrease is prominent for N⁵⁺ and N⁶⁺ ions. On the other hand, the intensity of N²⁺ ions increases at this potential. This result can be understood by assuming that the space charge potential of about 8 V is generated along the electron beam axis. If the applied potential becomes larger than 8 V, ions can not be confined along the drift tubes and, as a result, the intensity of highly ionized ions decreases significantly.

4.2. Pulsed mode

There are a lot of different operation modes in the pulsed beam production. In our system, the electron beams and also (residual) gases are continuously supplied. Therefore, the ion yields were measured as a function of some important parameters such as the ion confining time and the pulse width of ion extraction in order to understand the characteristics of PROTO-NICE in the pulsed operation mode.

4.2.1. Pulse width of extraction

Ions were extracted by applying a square-pulsed voltage with various widths to the last drift tube. The confinement time was fixed to 2 ms. The ion beam pulse shape was observed as a function of the pulse width of ion extraction. The ion beam intensities increase with lengthening pulse width and at least 70 μs of the pulse width is necessary to extract ions from the ion source and longer pulses add only weak tails of ion beams which are probably produced in ionization collisions after all ions confined are extracted.

4.2.2. Confinement time

In fig. 8 is shown the dependence of carbon ion yields on the confinement time. In the present case, the ion confinement time is controlled by applying a potential barrier with various widths at the last drift tube. For all the charge state ions, the peak currents increase with increasing the confinement time and reach saturation values. This increase is due to the confinement of ions in the electron space charge potential and the effective successive ionization. Because the residual gas atoms are continuously supplied, the calculated yield of C²⁺ ions can reach equilibrium a few ms after the ion confinement starts; such a behavior is in rough agreement with the observed data. For C⁶⁺ ions, according to the calculation, some hundreds of ms are necessary before the equilibrium of C⁵⁺ ion production is established. However, the observed data show that the production of C⁵⁺ ions reaches equilibrium after 15 ms confinement. This

![Fig. 7. Effect of potential gradient (ΔV) along the drift tubes on the charge distribution of nitrogen ions.](image)

![Fig. 8. Charge distribution of carbon ions measured as a function of the confinement time.](image)
discrepancy may be due to the beam loss after the natural neutralization of the electron space charge potential occurs. The calculated natural neutralization time, which is caused by the ionization of the residual ions, is estimated to be about 10 ms at a vacuum of 10^{-4} Torr which is a reasonable estimate of the vacuum inside the drift tubes. It is clear from fig. 8 that it is essential to attain a background pressure (of residual gases) that should be as low as possible in order to obtain the highest charge state ions from PROTO-NICE.

5. Concluding remarks

We have described some characteristics of our PROTO-NICE, which is an EBIS with a medium-sized ionization length of 40 cm. At 1 keV–100 mA electron beams, which corresponds to about 10 A/cm² beam density, H-like ions as well as He-like ions of residual gases (C^6+, N^6+ and O^7+ ions) are found to be produced in a continuous operation. There is also a weak but certain trace of the naked carbon ions ($^{13}C^6+$ ions). In the confinement mode by controlling the potential of the last drift tube, pulsed ion beams were extracted. It is found that there exists a best pulse width of the potential in order to extract effectively all ions generated and confined in the source. It is also found by observing the beam intensity as a function of the confinement time that the natural neutralization time in the present PROTO-NICE is much shorter than the calculated confinement time necessary to produce C^6+ ions with the best intensity. It becomes clear that the lowest background pressure is prerequisite in order to obtain the highest charge state heavy ions.

Based upon these results, a CRYO-NICE, an EBIS with a superconducting solenoid which can generate a magnetic field up to 20 kG, is now under development in our laboratory.

References

Symmetric resonance multiple charge transfer of Ne$^q+$ and Ar$^q+$ ($q \leq 4$)

Y Kaneko†, T Iwai‡, S Ohtani, K Okuno†, N Kobayashi†, S Tsurubuchi§, M Kimura|| and H Tawara¶

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 15 September 1980

Abstract. Cross sections for resonance charge transfer processes, A$^q++$ + A$^-$ → A$^+$ + A$^q+$, have been measured for Ne$^{1-4+}$ and Ar$^{1-4+}$ at ion acceleration voltages of 2, 3 and 4 kV. The cross sections obtained at 2 kV are 6.9×10^{-16}, 1.74×10^{-16}, 4.9×10^{-17} and 3.4×10^{-18} cm2 for Ne$^+$, Ne$^{2+}$, Ne$^{3+}$ and Ne$^{4+}$, respectively, and 2.4×10^{-15}, 5.5×10^{-16}, 9.0×10^{-17} and 3×10^{-18} cm2 for Ar$^+$, Ar$^{2+}$, Ar$^{3+}$ and Ar$^{4+}$, respectively. This is the first measurement of resonance charge transfer cross sections for quadruply charged ions. The results obtained are discussed in terms of the total ionisation energies $2\gamma I_j$ of the ions, where I_j is the jth ionisation potential. A concept of the ‘survival factor’ is introduced.

1. Introduction

So far, relatively little attention has been paid to symmetric resonance multiple charge transfer processes,

$$A^{q^+} + A \rightarrow A^+ + A^{q^+} \quad (q > 1) \tag{1}$$

compared with asymmetric charge transfer processes. Especially for $q \geq 3$, only a few measurements have been reported. Flaks and Filippenko (1959) determined cross sections $30\sigma_{03}$ for process (1) for Ne$^{3+}$ and Kr$^{3+}$ with ion energies of 9–90 keV. Latyrov et al (1968) measured $30\sigma_{03}$ for Ne, Ar and Xe with ion energies of 0.75–9 keV. Beuhler et al (1979) measured $30\sigma_{03}$ for Xe at 150 keV, and Okuno et al (1980) reported $30\sigma_{03}$ for Kr with ion energies of 0.6–7.5 keV. There are no reports of cross section measurements of resonance charge transfer for $q \geq 4$, except for that by Beuhler et al (1979) who estimated only the order of magnitude of $40\sigma_{04}$ for Xe at 200 keV.

A few theoretical papers have been published on resonance double charge transfer processes (Gurnee and Magee 1957, Ferguson and Moiseiwitsch 1959, Fetisov and Firsov 1959, Lichten 1963, Komarov and Yanev 1966). The concept that a resonance charge transfer cross section is determined in terms of the internuclear distance R_c where the u–g oscillation of the colliding system becomes appreciable is well established. All the theories cited above are based on this concept except for those
(Fetisov and Firsov 1959) taking account of escaping processes via pseudocrossings of the potential curves to the $A^+ + A^+$ states. No theories for resonance charge transfer for $q \geq 3$ are known to us.

Recently Okuno et al (1978) made cross section measurements of σ_{20} for Kr and Xe in the energy range from 0.04 to 10 eV (centre-of-mass system). They used the injected-ion drift tube method with isotope-selected primary ions, which is considered to be one of the most reliable ways of determining absolute integral cross sections in that energy range (Kaneko 1980). They found that the cross sections $20\sigma_{20}$ increase as $E^{-1/2}$ with the decrease of the collision energy E below 1 eV, and become almost equal to the classical orbiting cross sections multiplied by a factor of $1/2$. Their results are summarised as follows: (i) the resonance double charge transfer occurs with a probability about $1/2$ once the ion gets within a certain distance R_c from the atom, (ii) the cross sections $20\sigma_{20}$ exceed $10\sigma_{10}$ at room temperature and (iii) the cross section curves of $20\sigma_{20}$ are almost parallel to those of $10\sigma_{10}$ above 1 eV, and the ratios $20\sigma_{20}/10\sigma_{10}$ are close to $I_1/(I_1+I_2)$, where I_1 and I_2 are the first and second ionisation potentials, respectively.

Although these results were not unexpected from the existing theories, they are so striking and definitive that we were stimulated to discover what would happen to more highly charged ions. Of course, however, the experimental technique which Okuno et al used cannot be applied to the ions with $q > 2$ because highly charged ions may change their charge states in collisions with the He buffer gas (Kr^{2+} and Xe^{2+} are exceptions whose recombination energies are smaller than the ionisation potential of He). Therefore, a beam experiment at relatively high energies was performed, and some results on Ne^{q+} and Ar^{q+} ($q < 4$) are presented here.

2. Experimental

The experimental set-up for this study is shown schematically in figure 1. The ion source nicknamed cryo-NICE is of the EBIS type developed by Donets (1967, 1976). The cryo-NICE was designed as a source of highly stripped ions with low kinetic energies for studies of elementary processes in hot plasmas, and it was built at the Institute of Plasma Physics (IPP), Nagoya University. The ions are produced by a high-density electron beam confined by a strong magnetic field applied along the axis of the electron beam. The ions produced are trapped in the radial direction by the space charge potential of the electron beam. In the direction of the electron beam axis, the ions are confined by applying suitable potential barriers. Further stripping of the trapped ions proceeds through successive ionisation by electron bombardment. The ions can be extracted either in the pulse mode or in the continuous mode. The cryo-NICE has a superconducting magnet (SCM) for generating a strong and stable magnetic field. A surface of the liquid helium reservoir for the SCM is expected to have a cryogenic pumping function and to ensure an ultra-high vacuum in the source region. Because it has recently been constructed and no fine adjustment has been made, the full performance expected has not yet been achieved. Details of the source will be reported elsewhere after satisfactory adjustments are finished. Nevertheless, it provides enough intensity of ion beams for the present purpose.

The ions accelerated to the desired energy are mass analysed with a sector magnet B of 10 cm radius, and pass through a collision cell C. Then the beam is detected with a secondary electron multiplier M placed behind the cell. A pair of deflectors D_1 and D_2
Symmetric resonance multiple charge transfer

Figure 1. A schematic diagram of the apparatus used. B is a sector magnet of 10 cm radius, C is a collision cell, D₁ and D₂ are deflectors for manipulating ion beams, D₃ and D₄ are deflectors for complete separation of charged particles from the beam path, M is a Mullard-B419 multiplier and G is a capillary tube for target gas introduction. The diameter of the apertures are as follows: A₁(1.0 mm), A₂(0.8 mm), A₃(0.5 mm), A₄(2 mm) and A₅(10 mm). Collision length L which is the distance between A₃ and A₄ is 2.0 cm.

is used to manipulate the primary ion beams. Another pair of deflectors D₃ and D₄ is for complete separation of charged particles from the beam path. The beam intensities are measured by the single-counting mode. A channel-type continuous multiplier Mullard-B419 was used for the detector. It has a cone shaped opening 10 mm in diameter. The guard ring A₅ and the input end of the multiplier are kept at the ground potential, and a positive high voltage is applied on the output end of the multiplier. The distance between the exit of the collision cell and the detector is 8.0 cm. The diameters of the apertures around the collision cell are as follows: A₁(1.0 mm), A₂(0.8 mm), A₃(0.5 mm), A₄(2.0 mm) and A₅(10 mm). The collision path length L which is the distance between A₃ and A₄ is 2.0 cm. Target gas is introduced into the collision cell through a capillary tube G from the reservoir, the pressure of which is measured with a Pirani gauge calibrated carefully with an MKS Baratron capacitance manometer. By the use of the conductance of the capillary tube and cell apertures, the target gas pressure inside the cell is determined.

The cross sections are determined by

\[\sigma_{q0} \sigma_{0q} = \frac{\alpha_o S_0}{\alpha_q S_q N L} \]

(2)

where \(S_0 \) and \(S_q \) are the counting rates with and without the double deflector field, \(N \) is the target gas density, \(L \) is the collision path length, \(\alpha_0 \) and \(\alpha_q \) are the detection efficiencies of the fast neutrals and the primary ions of charge state \(q \).

Since, in the single-particle-counting technique, a single particle impinging on the multiplier is detected as a single output pulse of the multiplier, the detection efficiency should not depend on the charge state of the incoming particle as long as the missing counts due to the failure of ejection of secondary electrons are negligible. Therefore, we always assume \(\alpha_0 = \alpha_q = 1 \) in this experiment. This assumption may not be correct at
least for low-energy beams, and we shall discuss this problem later. Throughout the measurements, the primary ion beam intensities were reduced to be of the order of 1×10^4 counts/s in order to prevent the counting loss due to piling up.

The target gas density is given by $N = 3.54 \times 10^{16} P(273/T_g)$, where P is the target gas pressure in Torr and T_g is the gas temperature which is around 300 K. The target gas pressure is determined by $P = P_0 (F_0/F)$, where P_0 is the pressure of the gas reservoir, F_0 is the conductance of the capillary tube and F is that of the cell apertures. The vacuum theory provides $F_0/F = 2.67 d^3/[(K_3 a_3^2 + K_4 a_4^2)]$, where d and l are the radius and length of the capillary tube, a_3 and a_4 are the radii of the apertures A_3 and A_4, respectively, and K_3 and K_4 are the correction factors for the aperture thickness (Clausing factor). Given the values $d = 0.4$ mm, $l = 200$ mm, $a_3 = 0.25$ mm, $a_4 = 1$ mm, $K_3 = 0.95$ (for 0.03 mm thickness) and $K_4 = 0.91$ (for 0.2 mm thickness), the target pressure is given by $P = 0.88 \times 10^{-3} P_0$. When a measurement was made in a high-pressure range, the capillary tube was replaced by a shorter one of 100 mm length.

The ultimate vacuum measured with an ionisation gauge mounted on the vacuum chamber of cryo-NICE is 8×10^{-10} Torr. The pressure in the ion source region cannot be measured because it is surrounded by the walls of the liquid helium reservoir, and because the source pressure is supposed to depend on the vapour pressure of the gas at unknown temperatures inside the source. When a gas is introduced into the source region, the indicator of the ionisation gauge rises up to around 1×10^{-9} Torr. The target pressure inside the collision cell is usually kept below 5×10^{-5} Torr, and below 3×10^{-5} Torr in case of Ar$^4+$, in order to ensure single-collision conditions (see next section), while the pressure outside the cell is kept below 8×10^{-9} Torr by double differential pumping with two turbomolecular pumps.

Because multi-collision processes are more likely than single-collision processes to produce neutral atoms from highly charged ions, the target gas pressure must be kept as low as possible (see next section). Therefore, it is most important to minimise background S_0 signals, which are observed without target gas introduced but with the deflection fields at D_3 and D_4. In order to minimise the background signals, the following efforts were made: (i) the collision cell housing was baked for some days to reduce background gas pressure, (ii) each aperture edge was made as thin as possible, and especially A_3 was pierced in a copper foil 0.03 mm thick to reduce the possibility of neutralisation of the primary ion beams on the aperture walls and (iii) a double deflector system was used and one of the deflector plates D_3 was covered with a tungsten mesh and coated with carbon soot in order to minimise reflection of ions. The ultimate background signals were a few counts per minute while the noise level of the detector itself was less than one count per minute. Even this low-level background hindered the cross section measurement for ions with $q \geq 6$ as mentioned in the next section. Time-of-flight measurements showed that signals by photons produced along the beam path were negligibly small.

3. Results

3.1. Pressure dependence of S_0/S_q

In order to ensure that the fast neutral particles detected are produced through single-collision processes, the dependence of S_0/S_q on the target thickness $\pi = NL$ was examined. In figure 2, the results obtained for Ar$^4+$ with acceleration voltage 2 kV are
Symmetric resonance multiple charge transfer

Figure 2. Dependence of S_0/S_q on the target thickness for processes $\text{Ar}^{q+} + \text{Ar} \rightarrow \text{Ar} + \text{Ar}^{q+}$ at the ion acceleration voltage 2 kV. The full lines are 45° lines.

illustrated for a wide range of target thicknesses. As is seen in figure 2, S_0/S_q for Ar^+ is proportional to the target thickness in the wide range studied. For Ar^{2+} and Ar^{3+}, some upward deviation from 45° lines is seen at high values of π indicating contributions from two-step processes. For Ar^{4+}, the slope of the S_0/S_q curve tends to be 2 at high values of π, and tends to be independent of π at low values of π. The former trend indicates that two-step processes are dominant for high values of π, and the latter trend is attributed to the background S_0 signals which are observed even without the introduction of the target gas. In figures 3(a) and 3(b), linear plots of S_0/S_q in the low π region are shown for Ne^{2+} and Ar^{4+}. The broken curves indicate quadratic equations $S_0/S_q = a_0 + a_1\pi + a_2\pi^2$, which are best fitted to the experimental points by the method of least squares. The full lines indicate the linear parts of the equations, and the true cross sections can be deduced from the slopes. Because it takes quite a long time to measure each dependence of S_0/S_q on π, the cross sections for other acceleration voltages were determined by setting the target thickness at appropriate values and measuring the differences of neutral signals with and without target gases. This procedure is evidently safe for Ne^{q+} ($q \leq 4$) and Ar^{q+} ($q \leq 3$) when the target thickness is below 1×10^{-4} Torr cm (5×10^{-5} Torr). In the case of Ar^{4+}, this procedure will result in an overestimation of S_0 even though the target thickness is set below 6×10^{-5} Torr cm (3×10^{-5} Torr). Then, the S_0 are corrected for the quadratic term indicated above by neglecting the energy dependence of the quadratic term. This correction is 30% at most.
For ions with $q = 5$, cross section measurements could not be made because $\text{Ne}^{5+} (M/q = 4)$ and $\text{Ar}^{5+} (M/q = 8)$ could not be separated from some impurity ions such as C^3+ and O^{2+} in the primary beams. The S_0/S_q curve for Ar^{6+} in figure 2 indicates that even three-step processes contribute to some extent in this case. Efforts were made to minimise background signals as mentioned in the previous section, but the ultimate background signals hindered the separation of the linear portion from the measured S_0/S_q curve. In a preliminary experiment (Kaneko 1979) we overestimated these cross sections because of underestimation of multi-collision processes.

3.2. Cross sections

The cross sections obtained are shown in figures 4(a) and (b) and table 1. The acceleration voltages of primary ions are set at 2, 3 and 4 kV. In the case of Ar^+, no measurement was made at 4 kV because the field of the sector magnet was not strong enough to select the ions. Each point indicates the average of cross sections determined on different occasions. On each occasion several runs of measurements of S_0/S_q were made. The errors indicated in the figures and table are only for reference of the extent of data scattering.

The most ambiguous factors are the detection efficiencies α_0 and α_q in equation (2). As mentioned already, we have always assumed $\alpha_0 = \alpha_q$ in this experiment. This
Table 1. The cross sections σ_{0q} obtained for Ne$^{q+}$ and Ar$^{q+}$.

<table>
<thead>
<tr>
<th>Acceleration voltages (kV)</th>
<th>$10^3\sigma_{01}$ (10^{-16} cm2)</th>
<th>$20^3\sigma_{02}$ (10^{-16} cm2)</th>
<th>$30^3\sigma_{03}$ (10^{-17} cm2)</th>
<th>$40^3\sigma_{04}$ (10^{-18} cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne$^{q+}$</td>
<td>2</td>
<td>6.9 ± 1.0</td>
<td>1.74 ± 0.25</td>
<td>4.9 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.8 ± 1.0</td>
<td>2.08 ± 0.25</td>
<td>5.0 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.6 ± 1.0</td>
<td>1.82 ± 0.25</td>
<td>5.0 ± 0.7</td>
</tr>
<tr>
<td>Ar$^{q+}$</td>
<td>2</td>
<td>24 ± 5</td>
<td>5.5 ± 0.8</td>
<td>9.0 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20 ± 5</td>
<td>3.8 ± 0.8</td>
<td>9.5 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>—</td>
<td>3.9 ± 0.8</td>
<td>7.8 ± 1.5</td>
</tr>
</tbody>
</table>

assumption may not be correct at least for low-energy collisions. The present results for ions with $q = 1$, however, do not indicate any certain deviation from the results previously reported by other investigators. When the acceleration voltage was decreased below 2 kV, the reproducibility of the apparent cross sections becomes very poor. It may be explained partly by the inadequacy of the assumption of $\alpha_0 = \alpha_q$. However, the reproducibility became even worse for more highly charged ions for which the assumption $\alpha_0 = \alpha_q$ was expected to be safer than for lower charge state ions.
because higher velocities were gained by higher charge state ions at the same acceleration voltage. In the preliminary experiment we used a detector system consisting of a secondary electron converter plate and a multiplier. An aluminium plate and an Ag–Mg plate were tested for the converter, but always we observed poor reproducibility of \(S_0/S_q \) below 2 kV. Since we had to change the potentials of the lens system drastically to focus the ion beams with acceleration voltages below 2 kV, a slight change of impinging positions of ions and neutrals on the detector might cause appreciable changes in the detection efficiencies \(\alpha_0 \) and \(\alpha_q \). The causes of these phenomena are not yet clear. With acceleration voltages higher than 2 kV, the reproducibility was almost satisfactory and within the errors indicated. The uncertainty caused from \(\alpha_0/\alpha_q \) is estimated as 20%. The uncertainty associated with the determination of the target gas thickness is estimated to be 10%. The total uncertainty for the absolute values of the cross sections is therefore estimated to be 30%. In the case of Ar\(^{4+} \), an additional 20% uncertainty arises from the determination of the slope of \(S_0/S_q \) on target thickness, and it makes the total uncertainty 50%.

There are some results of other groups previously reported for ions with \(q \geq 3 \) and they are also shown in figures 4(a) and (b). These previous results scatter to some extent, and the present results are within the scattering of these data. No cross sections have been reported for ions with \(q = 4 \). Beu
er et al (1979) estimated \(40\sigma_0/4 \) for Xe to be \(0.1 \times 10^{-16} \) cm\(^2 \) at 200 keV which seems to be a little too large. Since the energy range studied is narrow, we cannot say much about the energy dependence of the cross sections obtained; nor can we say whether the primary ions are extracted in their ground state although it is said that the ions extracted from an EBIS type source include few ions in metastable states (Klinger et al 1975).

4. Discussion

No theories for symmetric resonance multiple charge transfer processes for ions with \(q \geq 3 \) are known. As mentioned in the introduction, it is well established that a resonance double charge transfer cross section is given by \(\frac{1}{2\pi R_c^2} \). Here \(R_c \) is the internuclear distance where the u–g oscillation starts (Gurnee and Magee 1957). There are several ways of estimating \(R_c \). In a study of symmetric resonance double charge transfer of Kr\(^{2+} \) and Xe\(^{2+} \) Okuno et al (1978) found that the ratios \(q_0\sigma_{0q}/10\sigma_{01} \) are close to \(I_1/(I_1 + I_2) \) above 1 eV. Here, \(I_1 \) and \(I_2 \) are the first and second ionisation potentials, respectively. This suggests that one of the simplest ways of estimation of \(R_c \) for resonance multiple charge transfer is to assume

\[
R_c^2 \propto \frac{1}{\sum_i I_i}
\]

where \(I_i \) is the \(i \)th ionisation potential. In table 2, a comparison of \(q_0\sigma_{0q}/10\sigma_{01} \) and \(I_1/\Sigma_i I_i \) is made. Although \(q_0\sigma_{0q} \) and \(10\sigma_{01} \) should be taken at the same energy for this purpose, we reluctantly take them at the same acceleration voltage 2 kV, because the energy ranges studied do not overlap. The agreement between \(q_0\sigma_{0q}/10\sigma_{01} \) and \(I_1/\Sigma_i I_i \) may be said to be fairly good for \(q = 2 \) if one takes into account that they are not at the same energy. For \(q = 3 \) and 4, the agreement is poor. This is quite natural from the following point of view.

In figures 5(a) and 5(b), some potential curves are schematically shown for (Ar–Ar)\(^{2+} \) and (Ar–Ar)\(^{3+} \) systems. These curves are drawn taking only the levels at
Table 2. Comparison of cross sections with ionisation potentials.

<table>
<thead>
<tr>
<th></th>
<th>$q_0\sigma_{0a}/10\sigma_{01}$†</th>
<th>$I_1/\Sigma I_1$‡</th>
<th>$q_0\sigma_{0a}/10\sigma_{01}$ (I_1/\Sigma I_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne²⁺</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.25</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.071</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0049</td>
<td>0.096</td>
</tr>
<tr>
<td>Ar²⁺</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.22</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.038</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0012</td>
<td>0.11</td>
</tr>
</tbody>
</table>

† At the ion acceleration voltage 2 kV.
‡ Moore (1971).

Figure 5. A schematic diagram of potential curves for (Ar–Ar)²⁺ and (Ar–Ar)³⁺ systems. The positions of R_c determined from the ratios of total ionisation energies and the single charge transfer cross sections (see text) are shown approximately.

infinity and the Coulomb repulsions into account. In the case of (Ar–Ar)²⁺, no potential curves for the final state (Ar⁺–Ar⁺) cross the curve for the initial state (Ar²⁺–Ar) at a distance larger than R_c. In contrast, in the case of (Ar–Ar)³⁺, a number of potential curves for (Ar²⁺⁺–Ar⁺) cross the potential curve for the initial state (Ar³⁺–Ar) outside R_c. Generally speaking, there are four collision paths at each potential crossing as indicated in figure 6. The initial collision pair Ar²⁺⁺–Ar results in elastic scattering by path (1), or results in Ar²⁺⁺–Ar state by path (2) (the underlines indicate fast particles). Some of the initial collision pairs penetrate the crossing and may reach R_c. On the way back, however, some of the pairs in the state Ar–Ar³⁺ which have experienced
resonance charge transfer escape to $\text{Ar}^{+}-\text{Ar}^{2+\ast}$ state by path (3). Thus, only the initial collision pairs going in and coming out by path (4) are eligible to be observed as the resonance charge transfered state $\text{Ar}^{-}\text{Ar}^{5+}$ except for the charge transfer probability. From this point of view, the ratios of experimental cross sections to hypothetical ones, which are given in table 2, are providing some idea on the 'survival factor'. That is, the survival factor is the possibility of getting to R_c and coming back without suffering from adiabatic processes at potential crossings. If the probabilities of penetration at the kth potential crossing is taken to be $(1 - P_k)$, the survival factor corresponds to $\Pi_n (1 - P_k)^2$, where n is the number of the crossings outside R_c. Of course, this is a very crude argument especially as the effects of potential crossings inside R_c are neglected. However, the fact that the ratio of $q_0 \sigma_{00}/10 \sigma_{01}$ to $I_1/\Sigma_1 I_j$ is much smaller for Ar^{4+} than for Ne^{4+} is quite understandable because there are much more potential crossings in the ($\text{Ar}-\text{Ar}$)$^{4+}$ system than in ($\text{Ne}-\text{Ne}$)$^{4+}$. It would be most interesting to see what will happen to resonance multiple charge transfer processes in very low-energy regions where the classical orbiting cross sections become large.

Acknowledgments

This work was carried out as a part of the Guest Research Program at the Institute of Plasma Physics, Nagoya University. The authors are grateful to Professor Kazuo Takayama, who retired from the office of Director of the Institute in April, for his encouragement through this work.

References

Symmetric resonance multiple charge transfer

Kaneko Y 1979 Institute of Plasma Physics, Nagoya University preprint IPPJ-AM-13 pp 28–37
— 1980 Proc. 11th Int. Conf. on Physics of Electronic and Atomic Collisions (Amsterdam: North-Holland)
Invited papers and progress reports pp 109–24

— 1980 Proc. 11th Int. Conf. on Physics of Electronic and Atomic Collisions (Amsterdam: North-Holland)
Abstracts pp 594–5
CROSS SECTIONS FOR ONE-ELECTRON CAPTURE FROM \textit{He}
BY HIGHLY STRIPPED IONS OF C, N, O, F, Ne AND S BELOW 1 keV/amu

Y. Kaneko*, T. Iwai*, S. Ohtani, K. O'uno*, N. Kobayashi*,
S. Tsurubuchi*, M. Kimura†, H. Tawara‡ and S. Takagi§

Institute of Plasma Physics, Nagoya University,
Nagoya 464, Japan

The cross sections for one-electron transfer from He atom into
the fully stripped, hydrogen-like, helium-like and lithium-like
Cq+, Nq+, Oq+, Fq+, Neq+ ions and also highly stripped Sq+ ions
have been measured at the energy range of 0.5q - 4.0q keV. It
is found that the measured cross sections are nearly independent
of the collision energy with a few exceptions. When plotted as
a function of the ionic charge q of ion, strong oscillations
in the cross sections are observed which are very similar in
phase but different in absolute values for ions with different
isoelectronic sequence. On the other hand, the measured cross
sections come together on a single curve when plotted as a
function of the effective core charge Z_1^* of ion by taking into
account the screening by electrons. This oscillatory behavior
can be explained reasonably well through the modified classical
one electron model of Ryufuku-Sasaki-Watanabe.

1. INTRODUCTION

The electron transfer process between highly stripped heavy ion with charge q and
atomic hydrogen at low energies

\[\text{A}^{q+} + \text{H} \rightarrow \text{A}(q-1)^+ + \text{H}^+ \] \hspace{1cm} (1)

is important not only in basic collision physics but also in many applications such as
astrophysics and high temperature plasma physics. In particular, the process (1)
involving impurity ions plays a key role in the energy and particle loss from the
Tokamak plasma1)). Because only a single electron is involved in the collision
process of the fully stripped ion, theoretical treatment is considerably simple and
a number of theoretical calculations have been reported. Most of the theories are
based upon the concept of formation of the quasi-molecule (A-H)q+ during collision.
Progress in theories is summarized by Olson2)). On the other hand, it is difficult
to obtain the highly ionized heavy ions at low energies and, therefore, experimental results are particularly scarce for the fully stripped ions. Data up to early 1980 have been compiled\(^5\). Presently both theoretical\(^2\) and experimental works\(^4,5\) are concentrated on investigations of the dependence of the cross sections on the ionic charge of ion \(q\) and its nuclear charge \(Z_i\) and on the collision energy. Most of theories predict that the cross sections change monotonically with the ionic charge \(q\) and its dependence is given as \(q^a\), \(a\) being roughly equal to 2 but slightly depending on the model used, and the cross sections are nearly independent of the collision energy below energies corresponding to the velocity of 1 a.u. with a few exceptions.

Experimental aspects including targets other than atomic hydrogen are reviewed by Salzborn and Müller\(^6\). Most of the data have been obtained at energies higher than a few keV/amu for partially ionized heavy ions. Again, almost all the experimental data show the monotonic dependence of the cross sections on \(q\). However, there is also experimental evidence that the cross sections do not change monotonically but some bumps or dips exist in some collision systems. For example, Müller\(^7\) and Crandall et al.\(^8\) reported the cross sections for Xe\(^q^+\) ions show a significant bump at \(q=5\) in collisions with H and Xe targets. Very recently, Blíman et al.\(^9\) also reported the non-monotonic variation of the cross sections for Ca\(^q^+\), Na\(^q^+\), O\(^q^+\) and Ar\(^q^+\) ions incident on D\(_2\) and Ar gas targets at the energies of \(1q - 10q\) keV. They concluded that such an oscillatory variation of the cross sections is not due to the presence of the metastable ions but due to the electronic structure of the projectile ions. Similar variations have also been observed by Cocke et al.\(^10\)

Meanwhile, Ryufuku, Sasaki and Watanabe (RSW)\(^11\), based on their unitarized distorted-wave approximation (UDWA)\(^12\), predict that such an oscillation of the cross sections at low energies occurs due to the crossings of the diabatic potential curves and that the amplitude of the oscillation is large at lower energies and the oscillation disappears at intermediate energies (\(\approx 25\) keV/amu). They also showed that at low energies the UDWA treatment is equivalent to the classical treatment (see 3.3).

The present paper describes our effort in measuring the cross sections for one-electron capture processes in highly stripped C, N, O, F, Ne and S ions including the fully stripped ions in collisions with He gas target:

\[
A^{q^+} + \text{He} \rightarrow A^{(q-1)^+} + \text{He}^+ \tag{2}
\]

at the energy range of 0.5\(q - 4.0q\) keV. This is, to our knowledge, the first systematic measurements of the cross sections for highly stripped heavy ions with the isoelectronic sequence.

2. Experimental

2.1 Ion source and charge state distribution of ions
In the present work, ions are produced in NICE-113), an electron beam type ion source (EBIS), which has a superconducting magnet to confine the high density electron beam. The surface of the superconducting magnet container at liquid He temperature works as a cryogenic pump to reduce background gas pressure in the ionization region. The background pressure measured at the outer vacuum vessel is usually 2×10^{-10} Torr. The present experimental set-up is schematically shown in Fig.1. Ions, accelerated to a desired energy, are mass-analyzed and injected into a collision chamber. To make separation and identification of the charge and mass of ions easy and sure, the stable isotope gases, 13CO, 15N\textsubscript{2} and 18O\textsubscript{2}, are used for C, N and O ions. Ne and SF\textsubscript{6} gases are used for Ne, F and S ions.

A typical charge state distribution of 15N ions is shown in Fig.2 which is observed with a continuous electron multiplier (EMT). In contrast to the ordinary EBIS14), the present NICE-1 is operated in a mode where gas and electron beam are continuous.

![Charge Spectrum of 15N](image-url)

- $V_j = 2.5$ KV
- $V_e = 2.5$ KV, $I_e = 10.5$ mA
- $p = 7.6 \times 10^{-9}$ Torr in vessel

Fig. 2
ly supplied15). Therefore, the charge of ions produced is fairly widely distributed over from \(q=1 \) to \(q=7 \) for \(N \) ions; their distribution is strongly dependent on the gas pressure in the ion source and the electron energy. The intensity of the fully stripped \(N-7^+ \) ions shown in Fig.2 is typically \(2\times10^3 \) counts per second (cps).

Because of such a wide charge distribution, ions with different charge states are obtained without changing the ion source parameters.

2.2 Cross section measurements

To reduce background signals, the present collision chamber is evacuated down to \(10^{-8} \) Torr with a 500 l/s turbo-molecular pump. The target density of the collision cell containing He gas atoms is estimated through the pressure in a gas reservoir measured with a capacitance manometer BAROCCELL and the calculated conductance of the capillary-aperture system used. Ions which pass through the collision cell are charge separated with a parallel plate electrostatic analyzer and detected with a multichannel plate detector (MCP) which works in a single particle counting mode. In this detection system, it is assumed that the sensitivity of the MCP is identical for all ions with different charge states because the ion impact energy on the MCP is always higher than a few keV where the coefficient of the secondary electron emission is usually larger than unity. It is found that the pulse height distribution from MCP used is dependent on the count rate. Therefore, in the course of measurements, care is taken to minimize the counting loss due to reduction of the pulse height by monitoring the pulse height distribution from MCP through a multichannel pulse height analyzer and an oscilloscope. The intensity of the primary ion beams is always kept less than \(1.5\times10^4 \) cps.

The cross sections for electron capture processes are determined through the initial growth of the charge-changed ions. The errors of the measured cross sections are estimated to be about \(\pm 30\% \) where most uncertainties come from the determination of the growth rate, the target thickness and reproducibility.
In Fig. 3 is shown a matrix of the ion and charge state which has been investigated in the present work. As seen in Fig. 3, we are concentrating ourselves on measurements of the cross sections of the fully stripped, hydrogen-like, helium-like and lithium-like ions.

![Graph](image)

Fig. 4

3. Results and discussions

3.1 Energy dependence of the cross sections

As those in previous works, the measured cross sections for one-electron capture of multiply-charged heavy ions are nearly independent of the collision energy over 0.5q - 4.0q keV investigated in the present work, except for a few collision systems such as C^{5+}, F^{8+}, Ne^{8+} and S^{13+} ions where the cross sections increase slightly with collision energy. As a typical example, the cross sections for the fully stripped C^{6+}, N^{7+} and O^{8+} ions are shown in Fig. 4. Full details of these results will be published elsewhere.

It is found from these data that the cross sections are varied with the charge state q and also with the nuclear charge ZI of the projectile ions at the present energy range. The variation of the cross sections is particularly large for highly stripped low ZI ions and seems to be not so simple and monotonic as predicted by theories but depends on both q and ZI.

3.2 Ionic charge dependence

In Fig. 5 are shown the cross sections at 0.8 keV/amu as a function of the initial charge state for all ions investigated. The lines are drawn to connect the initial charge of the isoelectronic sequence. As seen in Fig. 5, the cross sections oscillate strongly with q for all ions. These oscillations are particularly significant at low q. For example, the cross sections for q=3 and 5 are almost
one order of the magnitude larger than those for q=4. Also the oscillation of the
cross sections as a function of q is very similar for ions with different isoelec-
tronic sequence. Further, for the same q, the cross sections depend on the atomic
number \(Z_1 \) of the projectile ions. These oscillation and variation with q and \(Z_1 \)
tend to disappear with increasing q and \(Z_1 \). In fact, the measured cross sections
in the present work, averaged over the oscillation, are very similar to those
obtained from an empirical formula of Müller and Salzborn\(^{16}\).

3.3 The classical one-electron model with effective charge
As mentioned already, similar oscillations of the cross sections as a function of
\(Z_1 \) are predicted by RSW\(^{11}\) for the electron capture process between the naked ion
and atomic hydrogen where only a single electron is involved. However, in the
present case, the target of He has two electrons and the ion, partially ionized,
also has a few electrons. Therefore, both nuclei of the target and projectile ion
are screened by electrons and, then, the electron involved in the capture process
feels a potential by such screened nuclei. The effective core charge, \(Z_1^* \), of the
ion, as seen by the electron to be transfer, is not the same as the ionic charge of
the ion q.

In order to understand the oscillation phenomena observed in the present work, we
follow the classical one-electron model in the electron capture process by RSW with
the following modifications:

1. It is assumed that the partially stripped projectile ion consisting of the
core with the nuclear charge \(Z_1 \) and the screening electrons is equivalent to
a naked ion with the effective core charge \(Z_1^* \) and the target He atom con-
ists of the hydrogen-like nucleus with the effective charge \(Z_2^* \) and an
electron which is transferred into the projectile ion.

2. Such a core + electron system behaves hydrogenically, that is, the energy
of the level of ion with the effective charge \(Z^* \) is given by \(-Z^*^2/2n^2\)
where \(n \) is the principal quantum number of the level concerned.

3. The effective charge \(Z^* \) of such a partially stripped ion and helium atom is
determined through the ionization potential \(I_g \) in the ground state \((n_g) \) of
the core + electron system:

\[
Z^* = n_g \left(\frac{I_g}{I_H} \right)^{1/2} \tag{3}
\]

where \(I_H \) represents the ionization potential of hydrogen atom in the ground
state. For He target atom, \(Z_2^* = 1.34 \).

Then, the level energy for the excited state is calculated as follows:

\[
-(Z^*^2/2n^2) = -I_g n_g^2/(2n_H^2) \tag{4}
\]

As the ionization potential \(I_g \) of the ground state ion with the nuclear
charge \(Z \), empirical values of Lotz\(^{17}\) are used.

According to the classical one-electron model of RSW, the electron transfer to
multiply charge ion at low collision energies occurs when the energy levels of the
with the effective charge Z_1^* before collision and the right-hand side of eq. (5) does to that in the n_1 state of the projectile ion with the effective charge Z_1^* perturbed by the Coulomb potential of the He$^+$ ion with the effective charge Z_2^* after collision (see Fig. 6).

The electron transfer becomes possible when the diabatic potential energy before collision (the left-hand side of eq. (5)) exceeds the maximum value of the potential barrier formed between the projectile ion and target atom V_m:

$$-Z_1^*/R - (Z_2^*/2n_2^2)^2 > -V_m,$$

$$V_m = [(Z_1^*)^{1/2} + (Z_2^*)^{1/2}]^2/R.$$

From two equations (5) and (6), the integer n corresponding to the level where the electron is transferred can be determined as follows:

$$n \leq n_1,$$

where

$$n_1 = (Z_1^*/Z_2^*) \left((Z_2^*/2n_2^2)^2 + 2(Z_1^*Z_2^*/2n_2^2) \right)^{1/2} / (Z_1^* + 2(Z_1^*Z_2^*/2n_2^2))^{1/2}.$$

Then, the distance R_n corresponding to the crossing point of the diabatic potential curves, is given by the following equation:

$$R_n = (Z_1^* - Z_2^*) / [(Z_1^*)^{2/2n_2^2} - (Z_1^*Z_2^*/2n_2^2)]^{1/2}.$$

Therefore, the classical one-electron transfer cross section $\sigma_{q,q-1}$ is given as follows:

$$\sigma_{q,q-1} = (1/2)\pi R_n^2.$$

3.4 Comparison between the measured cross sections and the classical model

In Fig. 7 are shown the measured cross sections plotted as a function of the effective charge Z_1^* calculated from eq. (3), instead of the charge state q, together with those calculated from eq. (10) based on the classical model (dotted line). The number of n in Fig. 7 represents the principal quantum number of the level of the projectile ion into which the electron is captured. It is remarkable that almost all the measured cross sections come close together on a single curve. The oscillation is large for low Z_1^* and tends to vanish for higher Z_1^*. This oscillatory
Behavior is quite similar to the calculated one, though the agreement in the phase of the oscillation is not so good.

Such a poor agreement in the phase of the oscillation seems to be understandable from the following reasons:

1. In the present classical model, the tunnel effect is neglected and the possibility of the electron being captured into more than a single levels is neglected. If these effects are taken into account, the oscillation should dump.

2. The charge cloud of the target atom and of the partially stripped ion will be deformed during collision because of their finite size of the charge distribution. This polarization effect may result in the change of the electron transfer probability or in the change of the effective charges Z_{1}^{*} and Z_{2}^{*}. In either case, this effect may be large for higher Z_{1}^{*} ions.

3. Because the energy level of the excited states is not purely hydrogenic in character, some corrections are necessary to obtain the accurate level energy. These corrections cause the change of the effective charge Z_{1}^{*} which, in turn, may give rise to some systematic deviations between different isoelectronic sequences.

In essence, however, the oscillatory behavior of the measured cross sections observed in the present work is a good indication that, in highly stripped heavy ion collision at low energies, the electron is captured dominantly into a particular single level of the projectile ion through the crossing of the diabatic energy levels in the collision system. The oscillation is particularly significant for low Z ions. For low Z ions, the energy level responsible for the electron capture has a small value of n and then the adjacent levels are largely separated. This causes a great increase in the cross section even if the n-value is promoted by one.

On the other hand, for high Z ions, the electron is captured into a level having a large n, where the energy levels are densely located, and then more than a single levels have a chance to capture electron from the target atom. This may be a reason why the amplitude of the oscillation in the cross sections tends to diminish toward higher Z ions.
4. Conclusions

We have measured the cross sections for one-electron transfer from He atom into highly stripped C^{q+}, N^{q+}, O^{q+}, F^{q+}, Ne^{q+} and S^{q+} ions produced in an electron beam ion source at energies less than 1 keV/amu. The measured cross sections plotted as a function of the ionic charge of ion q show significant oscillations with q which tend to disappear at large q. These oscillations are very similar for ions with different isoelectronic sequence but the observed cross sections are considerably different from each other. On the other hand, when plotted as a function of the effective charge Z'_1 of ion, the cross sections measured come close together on a single curve with an oscillation which is reasonably well reproduced with the classical one-electron model, though their phase of the oscillation is not in good agreement with each other.

In order to understand the oscillatory phenomena in the cross sections for electron transfer processes, measurements of the cross sections for lower Z'_1 ions such as B^{q+}, Be^{q+} and Li^{q+} ions seem to be important at the low energy range and also more sophisticated calculations of the cross sections would be of great help.

5. References

6) E. Salzborn and A. Müller, p.407 in ref.2).
Cross sections for one-electron capture by highly stripped ions of B, C, N, O, F, Ne, and S from He below 1 keV/amu

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

(Received 31 August 1981)

Cross sections for one-electron transfer from a He atom into the fully stripped, hydrogenlike, heliumlike, and lithiumlike B, C, N, O, F, Ne, and S ions have been measured at the energy range of 1.5 to 3.0 keV. The measured cross sections are nearly independent of the collision energy with a few exceptions, and most of the cross sections measured are about \((1-4) \times 10^{-15} \) cm\(^2\), but the cross sections for B\(^{4+}\), C\(^{4+}\), and N\(^{4+}\) ions are very small in the energy range studied. When the cross sections measured are plotted as a function of the ionic charge \(q \) of isoelectronic projectile ions, strong oscillations in the cross sections are observed. As a first approximation, this oscillatory behavior can be explained in terms of the classical one-electron model.

I. INTRODUCTION

The electron capture process by highly stripped ions is currently of great importance not only in basic atomic collision physics but also in such diverse fields as controlled-thermonuclear-fusion research, developments of x-ray laser devices and astrophysics.

In particular, the electron-capture process by highly stripped ions \(A^{q+} \) from atomic hydrogen at low energies,

\[
A^{q+} + H \rightarrow A^{(q-1)+} + H^+,
\]

plays a key role in the energy and particle losses from high-temperature plasmas. Because of a simple situation in the collision process of the fully stripped ion, a number of theoretical calculations have been reported. On the other hand, it is difficult to obtain highly stripped ions at low energies and, therefore, experimental results are scarce for the fully stripped ions. Until now, theoretical and experimental works including partially stripped ions have been concentrated on investigations of the dependence of the cross sections on the ionic charge \(q \) of the projectile ion and its nuclear charge \(Z_1 \) and on the collision energy.

Most of the theories are based on the concept of the quasimolecule \((A-H)^{q+} \) during collisions. Then, the cross sections are mainly determined by interactions at the crossings between the diabatic potential curves of the initial \((A^{q+}-H) \) and the final \((A^{(q-1)+}-H^+) \) states. For the high-charge states of projectile ions, there are many curve crossings and it is possible to model the collision processes. These theories predicted that the cross sections change monotonically with the ionic charge \(q \) and are proportional to \(q^{\alpha} \), where \(\alpha \) is equal to 1 to 2 depending on the model used, and that the cross sections are nearly independent of the collision velocity at low and intermediate velocities \((10^6 \sim 10^8 \text{ cm/s})\). Meanwhile, for the low-\(q \) states, several theories showed that the cross sections do not scale according to such a simple rule as \(q \) changes. Aside from detailed calculations for the specified collision processes, Ryufuku, Sasaki, and Watanabe (RSW) predicted a strongly oscillatory dependence of the cross sections on certain effective charges of projectile ions at low and intermediate energies \((<10 \text{ keV/amu})\) using a model in which the projectiles are replaced by bare nuclei having the effective charges. They also showed the oscillation disappears at higher energies.

Experimental aspects including target atoms other than atomic hydrogen have been reviewed by Salzborn and Müller. Most of the data have been obtained for partially stripped ions at energies higher than a few keV/amu. Almost all the experimental data show the monotonic dependence of the cross sections on \(q \). However, there are experimental evidences that in some collisions cross sections do not change monotonically, but some bumps or dips exist. As for the H target atom, for example,
Crandall et al.5,7 and Gardner et al.8 reported that the cross sections for C, N, O, F, and Xe ions show significant bumps at $q = 3$ and 5 in the keV/amu energy region; Phaneuf reported very recently that the cross sections for C ions show neither monotonic change with q nor uniform velocity dependence below 500 eV/amu.9 Recently, Bliman et al.10 reported the nonmonotonic variation of the cross sections for C, N, O, and Ar ions incident on D$_2$ and Ar gas targets in the energy range of 1q -- 10q keV. They concluded that such an oscillatory behavior of the cross sections is not due to the presence of metastable projectile ions but due to the electronic structure of the ions. Similar oscillations were observed by Cocke et al.11 Mann et al.12 also reported that the cross sections for the one-electron capture by highly stripped heavy ions change drastically in the magnitude with the ionization potential of the target atoms.

The helium atom, among others, is an interesting target atom, because its electronic structure is simple enough to treat theoretically, and because it is easily prepared as a target atom in collision experiments. The electron-capture process by highly stripped ions from He atom has been studied experimentally by several authors13--19. Zwally et al.15,16 measured the cross sections of one-electron capture for C$^{4+}$ and B$^{3+}$ ions in the wide energy range of 0.3 -- 40 keV. Crandall18 and Gardner et al.19 measured the cross sections of one-electron capture for the He-like and the Li-like ions such as B$^+$, C$^+$, N$^+$, and O$^+$ ions in the energy range of 6q -- 23q keV, and observed the nonmonotonic variation with the charge state q. They also measured the cross section of two-electron capture and found that this cross section becomes greater than that of one-electron capture for the C$^{4+}$ ion as the collision energy is reduced. No measurement of the cross sections, however, was reported for fully stripped ions or the H-like ions except for B$^{1+}$ at low energies.20

The present paper describes our effort in measuring the cross sections of one-electron capture for highly stripped B, C, N, O, F, Ne, and S ions including the fully stripped ions in collision with helium target,

$$A^{q+} + \text{He} \rightarrow A^{(q-1)+} + \text{(product)}$$ \hspace{1cm} (2)

at the collision energies below 3.0q keV. This is, to our knowledge, the first systematic measurement of the one-electron-capture cross section for highly stripped ions with the isoelectronic sequence.

II. EXPERIMENTAL TECHNIQUE

A. Ion source and experimental setup

The ion source in the present work, called NICE-1, is an electron-beam-ion source (EBIS) originally developed by Donets.21 The ions are produced by a high-density electron beam confined by a strong magnetic field applied along the electron-beam axis.

The NICE-1 has a superconducting magnet (SCM) for generating a strong and stable magnetic field; the solenoid made of Nb-Ti is 100 cm in length and 10 cm in inside diameter (i.d.); the magnetic field can be varied up to 2 T; a persistent current-mode operation is chosen. A surface of the liquid-helium reservoir for the SCM works as a cryogenic pump to reduce the background gas pressure in the ionization region. An electron beam is extracted from a thoriated tungsten hair-pin-type gun and passes through an anode hole of 2 mm in radius and the subsequent 14 pieces of drift tubes of 3 cm in i.d. surrounded by the liquid-helium reservoir. A very small amount of gases is injected through a gap between the first and second drift tubes. Ions produced by electron impacts are trapped radially by the space-charge potential of the electron beam and axially by the potential barriers applied to the drift tubes. The step-by-step ionization of the trapped ions proceeds by successive electron bombardments. The diameter of the electron beam was not measured directly, but is estimated to be less than 0.5 mm. After passing through the drift tubes, the electron beam is received by an electron collector shielded from the magnetic field by a soft-iron plate and a μ-metal cylinder. A typical electron current is 15 mA at 2 kV and 1.2 T. The background gas pressure measured at the vacuum vessel of the NICE-1 is usually 2×10^{-10} Torr. Such an ultrahigh vacuum is essentially important for producing the fully stripped ions. For the fully stripped C$^{6+}$, N$^{7+}$, and O$^{8+}$ ions, stable isotope gases 13CO, 15N$_2$, and 18O$_2$ are used to separate from impurity ions having $M/q = 2$. BF$_3$, Ne, and SF$_6$ gases are used for B, Ne, F, and S ions.

The present experimental setup is schematically shown in Fig. 1. Ions extracted from the source are accelerated to a desired energy. An ion beam, formed after passing through an einzel lens and a pair of quadrupole lenses, is mass analyzed with a
FIG. 1. Schematic view of the apparatus.

60° sector of 20-cm radius and injected into a collision cell. The ion beam is well collimated by a pair of beam-defining apertures of 1 mm diam A_1 and A_2; the distance between A_1 and A_2 is 5 cm and A_2 is placed 4 cm in front of the gas cell. The gas cell is 2 cm in length and its entrance and exit apertures are 0.8 and 1 mm in diameter, respectively. Ions which pass through the cell are charge separated with a parallel plate electrostatic analyzer located 1 cm behind the cell; the entrance and exit apertures of the analyzer plate are 5 mm in width and 8 mm in height. By changing the voltage applied to the analyzer, both the primary A^{q+} ions and the charge-changed $A^{(q-1)+}$ ions are detected with the same microchannel plate detector (MCP, HTV Fl1158) in a single-counting mode. Another detector, a continuous electron multiplier (EMT), aligned to the ion-beam axis, is used to identify the charge and mass of the primary ion. In order to reduce background signals, the pressure outside the collision cell is kept below 2×10^{-8} Torr with a 500-L/s turbomolecular pump. Figure 2 shows a typical charge-state spectrum of 15N at the acceleration voltage of 2.5 kV. In contrast to the ordinary EBIS operation, the NICE-1 is operated in a mode where gas atoms to be ionized and the electron beam are continuously supplied. Therefore the charge of ions produced is widely distributed over from $q=1$ to 7 for N ions; their distribution is strongly dependent on the gas pressure in the ion source and the electron energy. The intensity of the fully stripped N^{7+} ions shown in Fig. 2 is typically 2×10^3 counts per s (cps). Because of such a wide charge distribution, ions with different charge state are obtained without changing the ion source parameters.

The He target gas is introduced through a stainless-steel tubing from a cylinder containing He of high purity (99.999%). In order to avoid any contamination with impurities, the tubing is carefully connected and preheated.

B. Measurement of cross sections

1. Determination of cross sections

Cross section for the one-electron-capture process $\sigma_{q,q-1}$ is determined by

$$\sigma_{q,q-1} = \frac{\alpha_q S_{q-1}}{\alpha_{q-1} S_q NL},$$

where S_q is the count rate for the primary A^{q+} ions, S_{q-1} for the charge-changed $A^{(q-1)+}$ ions, N the number density of the target He atom, L the collision-path length, and α_q and α_{q-1} are the detection efficiencies for the A^{q+} and $A^{(q-1)+}$ ions. In the present detection system, we assumed that the detection efficiency of the MCP is identical for all the ions with different charge states, that is,
\(\alpha_q = \alpha_{q-1}\), because the ion impact energy on the MCP is always higher than a few keV where the coefficient of the secondary electron emission is usually larger than unity.

It is found that the pulse-height distribution from the MCP used is nearly independent of the ion impact energy for all the charge states, but dependent on the charge state and the count rate. The maximum of the pulse-height distribution shifts towards higher values as the charge state increases, and the pulse-height distribution becomes broader and its maximum shifts towards lower values as the count rate increases. Therefore, for each experimental run, care is taken to minimize the counting loss due to reduction of the pulse height by monitoring the pulse-height distribution from the MCP with a multichannel pulse-height analyzer and an oscilloscope. The count rate of the primary ion beam is always kept less than \(5 \times 10^3\) cps. Spacial detection efficiency of the MCP used is checked by varying the analyzer voltage, and is confirmed to be fairly uniform over the detection area within the limits of stabilities of incident ion beams.

The target density \(N\) in the gas cell is determined by the use of the calculated conductance of the capillary tube and cell apertures and by measurements of the pressure in the He gas reservoir with a capacitance manometer (BARCELL). Details of the determination have been described in Ref. 23. The collision-path length \(L\) is assumed to be the distance between the apertures of the cell which is 2 cm.

Actually, cross sections for the one-electron-capture process are determined through the initial growth of the charge-changed \(^{15}\text{N}^{q+}\) ions. This procedure is illustrated in Fig. 3 as an example, which shows the count rate for the primary \(^{15}\text{N}^{7+}\) ions and charge-changed \(^{15}\text{N}^{6+}\) ions as a function of the target thickness \(NL\). At first, the analyzer voltage is set for the primary ions to impact on the MCP while the collision cell is evacuated, and then

![Charge Spectrum of \(^{15}\text{N}\)](image)

FIG. 2. Typical spectrum of the charge-state distribution of \(^{15}\text{N}^{q+}\) ions extracted at 2.5 kV from the NICE-1 under the condition that the electron beam intensity is 10.5 mA at 2.5 kV. Ion detection is made by the EMT shown in Fig. 1.

![Growth-rate curve of the charge-changed \(^{15}\text{N}^{6+}\) ion for the primary \(^{15}\text{N}^{7+}\) ion](image)

FIG. 3. Growth-rate curve of the charge-changed \(^{15}\text{N}^{6+}\) ion for the primary \(^{15}\text{N}^{7+}\) ion. See text for detail.
the target He gas is introduced into the cell until a few % reduction of the count rate of the primary ions is observed [part (a) in Fig. 3] Secondly, the analyzer voltage is set for the charge-changed ions and the target gas pressure is reduced continuously [part (b) in Fig. 3]. Finally, the analyzer voltage is returned for the primary ions in order to check the reproducibility of the count rate of the primary ions [part (c) in Fig. 3]. Then the cross section can be determined from the slope of the growth-rate curve. This procedure has four advantages at least. First, it is easy and sure to check for single-collision conditions, which are necessary to apply Eq. (3), by directly observing the linearity of the growth-rate curve. Second, background noise signals are readily subtracted from the count rate of the charge-changed ions S_{q-1} which is usually several tens of cps when S_q is of the order of 10^2 cps. Third, it is very useful to reduce statistical errors, because the continuous variation of the target thickness corresponds to average out a lot of point-to-point measurements. Fourth, the identification of the primary ions, which is usually not so easy because of the presence of impurity ions in the primary beam, can be reconfirmed by the analyzer potentials to be applied for the A^{q+} and $A^{(q-1)+}$ ions.

2. Uncertainties

Most of uncertainties come from the stability of the primary ion beam, determination of the slope of the growth-rate curve and of the target thickness. The uncertainty in the stability of the primary ion beam is estimated to be less than ±8%. The uncertainty associated with determination of the slope of the growth-rate curve is less than ±20%. Determination of the target thickness involves about ±10% uncertainty as estimated in the previous work. Further uncertainty arises from the dependence of counting efficiency of the detector on the ionic charge state and count rate. This uncertainty, however, is elaborately reduced as mentioned in Sec. II B, and estimated at ±5%. The total uncertainty for the absolute value of the cross section therefore is estimated to be about ±30% in quadrature sum except for the uncertainty in the primary ion-beam purity. All ions studied are completely separated and well identified by the use of stable isotopes. However, we cannot say whether the primary ions are extracted in their ground state although it is said that an EBIS-type ion source produces few ions in the metastable states.

III. RESULTS AND DISCUSSION

A. General results and comparison with others

Table I presents the measured cross sections for the one-electron capture by highly stripped B, C, N, O, F, Ne, and S ions together with total uncertainties. In general, most of the cross sections measured are about $1-4 \times 10^{-15}$ cm2 in the collision energy range of $1.5q$ - $3.0q$ keV investigated in the present work. However, it is quite remarkable that the cross sections obtained for B^{4+}, C^{3+}, and N^{3+} ions are anomalously small. The measured cross sections are nearly independent of the collision energy, though the present energy range is rather narrow. Some cross sections, however, increase with the collision energy in such collisions as B^{3+}, C^{2+}, F^{4+}, Ne^{5+}, and S^{13+}-He systems.

There are several groups which have studied experimentally the A^{q+}-He system. All of the present data are illustrated in Figs. 4(a) - 4(g) for comparison with others. Owing to the different energy range studied, the present data cannot be compared directly to others except for the data of Zwally et al. Nikolaev et al. reported the cross sections $\sigma_{q,q-1}$ for the fully stripped B^{5+} ion, the H-like B^{4+} and N^{5+} ions, the He-like B^{3+}, C^{2+}, N^{3+}, and O^{6+} ions, and the Li-like B^{2+}, C^{1+}, N^{2+}, and O^{5+} ions. Their data, however, were obtained in the energy range about 100 times as high as the present ones; in their energy range $\sigma_{q,q-1}$ sharply decreases with the collision energy; their data are not shown in Fig. 4. Crandall and Gardner et al. obtained their data at energies a few times as high as the present ones. In their energy range, most of the cross sections are nearly independent of energy. As seen in Figs. 4(a) - 4(d), rough extrapolation of their data indicates that the present data seem to be in fairly good agreement with theirs for the B^{3+}, C^{1+}, N^{3+}, and O^{6+} ions which are the only ionic species available for comparison. Data of Zwally and Koopman for the C^{4+} ion and of Zwally and Cable for the B^{3+} ion, which can be directly compared with ours, are in good agreement with the present data as seen in Figs. 4(a) and 4(b). As for the fully stripped C^{6+}, N^{7+}, and O^{8+} ions, the present data are compared with the results of Afrosimov et al. Though the collision energy range tested is different, both data seem to be smoothly connected with each other.

It is found from the present data that the cross sections $\sigma_{q,q-1}$ vary with the ionic charge q drastically and also with nuclear charge Z_1 of projectile.
TABLE I. One-electron-capture cross sections \(\sigma_{e^-} \) for the highly stripped ion from He at collision energy \(E \).

<table>
<thead>
<tr>
<th>Ion</th>
<th>(E) (keV/amu)</th>
<th>(\sigma_{e^-}) (10^{-16} cm^2)</th>
<th>Ion</th>
<th>(E) (keV/amu)</th>
<th>(\sigma_{e^-}) (10^{-16} cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^{3+}</td>
<td>0.44</td>
<td>12.2 ± 2.4</td>
<td>O^{4+}</td>
<td>0.47</td>
<td>22.7 ± 4.5</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
<td>17.3 ± 3.5</td>
<td></td>
<td>0.63</td>
<td>25.1 ± 5.0</td>
</tr>
<tr>
<td></td>
<td>0.68</td>
<td>13.2 ± 2.6</td>
<td></td>
<td>0.78</td>
<td>23.9 ± 4.8</td>
</tr>
<tr>
<td></td>
<td>0.82</td>
<td>14.6 ± 2.9</td>
<td></td>
<td>0.56</td>
<td>9.0 ± 1.8</td>
</tr>
<tr>
<td>B^{4+}</td>
<td>0.58</td>
<td>0.92 ± 0.28</td>
<td></td>
<td>0.75</td>
<td>11.6 ± 2.3</td>
</tr>
<tr>
<td></td>
<td>0.73</td>
<td>1.36 ± 0.41</td>
<td></td>
<td>0.94</td>
<td>12.1 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>1.53 ± 0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.09</td>
<td>2.87 ± 0.86</td>
<td>O^{6+}</td>
<td>0.58</td>
<td>12.3 ± 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td>13.6 ± 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16O^{7+}</td>
<td>0.88</td>
<td>12.8 ± 2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.76</td>
<td>27.3 ± 5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.89</td>
<td>30.6 ± 6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.11</td>
<td>34.4 ± 6.9</td>
</tr>
<tr>
<td>B^{5+}</td>
<td>0.73</td>
<td>8.4 ± 1.7</td>
<td>F^{9+}</td>
<td>0.54</td>
<td>18.5 ± 3.7</td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>8.3 ± 1.7</td>
<td></td>
<td>0.63</td>
<td>18.8 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>11.6 ± 2.3</td>
<td></td>
<td>0.79</td>
<td>19.4 ± 3.9</td>
</tr>
<tr>
<td></td>
<td>1.36</td>
<td>9.2 ± 1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C^{2+}</td>
<td>0.38</td>
<td>14.7 ± 2.9</td>
<td>F^{10+}</td>
<td>0.54</td>
<td>16.2 ± 3.2</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>18.8 ± 2.9</td>
<td></td>
<td>0.63</td>
<td>17.6 ± 3.5</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>22.5 ± 4.5</td>
<td></td>
<td>0.74</td>
<td>21.7 ± 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92</td>
<td>34.5 ± 6.9</td>
</tr>
<tr>
<td>C^{3+}</td>
<td>0.63</td>
<td>0.85 ± 0.26</td>
<td>C^{2+}</td>
<td>0.72</td>
<td>26.7 ± 5.3</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.72 ± 0.52</td>
<td></td>
<td>0.84</td>
<td>30.4 ± 6.1</td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>1.16 ± 0.35</td>
<td></td>
<td>1.05</td>
<td>32.2 ± 6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{16}N^{4+}</td>
<td>0.69</td>
<td>15.2 ± 3.0</td>
<td>C^{4+}</td>
<td>0.54</td>
<td>28.0 ± 5.6</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>7.9 ± 1.6</td>
<td></td>
<td>0.53</td>
<td>30.4 ± 6.1</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
<td>13.2 ± 2.6</td>
<td></td>
<td>0.64</td>
<td>30.4 ± 6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
<td>32.2 ± 6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^{3+}</td>
<td>0.43</td>
<td>3.0 ± 0.9</td>
<td>C^{5+}</td>
<td>0.54</td>
<td>20.1 ± 4.0</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>3.7 ± 1.1</td>
<td></td>
<td>0.57</td>
<td>19.3 ± 3.9</td>
</tr>
<tr>
<td></td>
<td>0.71</td>
<td>3.5 ± 1.1</td>
<td></td>
<td>0.69</td>
<td>20.1 ± 4.0</td>
</tr>
<tr>
<td></td>
<td>0.89</td>
<td>14.4 ± 2.9</td>
<td></td>
<td>0.73</td>
<td>37.7 ± 7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td>33.9 ± 6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{15}N^{4+}</td>
<td>0.68</td>
<td>14.2 ± 2.8</td>
<td>N^{5+}</td>
<td>0.77</td>
<td>18.1 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>15.5 ± 3.1</td>
<td></td>
<td>0.77</td>
<td>18.1 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>15.0 ± 3.0</td>
<td></td>
<td>0.90</td>
<td>20.1 ± 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.13</td>
<td>19.3 ± 3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{15}N^{7+}</td>
<td>0.78</td>
<td>7.6 ± 2.8</td>
<td>^{20}Ne^{9+}</td>
<td>0.77</td>
<td>40.2 ± 8.0</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
<td>10.9 ± 2.2</td>
<td></td>
<td>0.77</td>
<td>18.1 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td>11.9 ± 2.4</td>
<td></td>
<td>0.81</td>
<td>45.3 ± 9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>50.5 ± 10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ions at the present energy range. The variation of the cross sections is enhanced for highly stripped low-Z\(_1 \) ions and is not simple and monotonic as \(q \) changes, but really depends on both \(q \) and \(Z_1 \).
B. Ionic charge dependence

In Fig. 5 are shown the cross sections reasonably interpolated at 0.8 keV/amu as a function of the initial charge state \(q \) for all ions investigated. The lines are drawn to connect data for ions having the same isoelectronic sequences such as fully stripped, H-like, He-like, and Li-like ions. As seen in Fig. 5, the cross sections oscillate strongly with \(q \) for all ions. These oscillations are particularly significant at low \(q \). For example, the cross sections for \(q = 3 \) and 5 are almost one order of magnitude larger than those for \(q = 4 \). Furthermore, for the same \(q \), the cross sections depend on the atomic number \(Z_I \) of the projectile ions. These oscillations with \(q \) and variations with \(Z_I \) tend to disappear with increasing \(q \) and \(Z_I \). In fact, when the oscillation of the measured cross sections in the present work is smoothed out, the \(q \) dependence is quite similar to that obtained from an empirical formula of Müller and Salzborn,\(^{25}\) which is shown as a dotted line in Fig. 5.

C. Classical one-electron model with effective charge

Few theoretical studies have been made on the electron-capture process for \(A^q+ \). He collisions.

FIG. 4. (a) Cross section of one-electron capture by \(B^{2+}, B^{4+}, \) and \(B^{5+} \) ions incident on He. Open circles are the present data, triangles the data of Zwally and Cable (Ref. 16), solid circles the data of Crandall (Ref. 18), squares the data of Gardner et al. (Ref. 19). Dashed line is the theoretical result of Shipsey et al. (Ref. 26). (b) Cross sections of one-electron capture by \(C^{3+}, C^{4+}, C^{5+}, \) and \(C^{6+} \) ions incident on He. Open circles are the present data, triangles the data of Zwally and Koopman (Ref. 15), solid circles the data of Crandall (Ref. 18), squares the data of Gardner et al. (Ref. 19), crosses the data of Afrosimov et al. (Ref. 20). Dashed line is the theoretical result of Shipsey et al. (Ref. 26). (c) Cross sections of one-electron capture by \(N^{4+}, N^{5+}, N^{6+}, \) and \(N^{7+} \) ions incident on He. Open circles are the present data, solid circles the data of Crandall (Ref. 18), squares the data of Gardner et al. (Ref. 19), crosses the data of Afrosimov et al. (Ref. 20), solid circles the data of Gardner et al. (Ref. 19, crosses the data of Afrosimov et al. (Ref. 20, crosses the data of Afrosimov et al. (Ref. 20). (d) Cross sections of one-electron capture by \(O^{5+}, O^{6+}, \) and \(O^{7+} \) ions incident on He. Open circles are the present data, solid circles the data of Crandall (Ref. 18), squares the data of Gardner et al. (Ref. 19), crosses the data of Afrosimov et al. (Ref. 20). (e) Cross sections of one-electron capture by \(Ne^{5+}, Ne^{6+}, \) and \(Ne^{7+} \) ions incident on He. (f) Cross sections of one-electron capture by \(S^{1+} \) and \(S^{3+} \) ions incident on He.
FIG. 4. (Continued.)
Shipsey et al.26 calculated the cross sections for B3+ and C4+-He collisions by the use of the molecular-orbital method, and their results for the one-electron-capture process are shown as dashed lines in Figs. 4(a) and 4(b). Their results agree with the present data and those of Zwaal and Cable16 for B3+ ions, but their cross sections are somewhat smaller than the experimental results for C4+ ions. Except for their calculations, there has been neither detailed calculation of individual collision processes nor overall treatment for better understanding of the A4+-He collision systems systematically.

As mentioned in Sec. I, similar oscillations of the cross sections were predicted by RSW4 as a function of the effective charge q of projectile ions. The dotted line is obtained from the empirical formula of Müller and Salzbom (Ref. 25).

![Cross Section for One-Electron Capture by Highly-Charged Projectiles](image)

FIG. 5. Measured cross sections σ_{eq} at 0.8 keV/amu as a function of the ionic charge q of projectile ions. The dotted line is obtained from the empirical formula of Müller and Salzbom (Ref. 25).

The electron system behaves hydrogenically, that is, its energy level is given by $-(Z^*)^2/2n^2$, where n is the principal quantum number of the level concerned. The effective charge Z^* is determined from the ionization potential I_g of the ground state (n_g) of the system

$$Z^* = n_g \frac{I_g}{I_H},$$

(4)

where I_H is the ionization potential of the H atom. As the ionization potential I_g, empirical values of Lotz28 are used. Then, the energy level of the excited state (n) is calculated by

$$\frac{-(Z^*)^2}{2n^2} = \frac{-I_g n_g^2}{(2n^2 I_H)}.$$

(5)

According to the classical one-electron model, the electron transfer from He atom to projectile ions occurs when the energy levels of the collision system before and after collision coincide diabatically with each other, that is, the quasiresonance condition is fulfilled:

$$\frac{-Z_1^*}{R} - \frac{(Z_1^*)^2}{2n_1^2} = \frac{-I_g n_g^2}{(2n^2 I_H)} - \frac{Z_1^*}{R},$$

(6)

where R is the internuclear distance between projectile ion and the target He atom. The left-hand side of Eq. (6) corresponds to the diabatic potential energy of the n_2 state of the target He atom perturbed by the Coulomb potential of the projectile ion before collision, and the right-hand side of Eq. (6) does to that of the n_1 state of the projectile ion plus one electron perturbed by the Coulomb potential of the He$^+$ ion after collision. In the present case, $n_2 = 1$ since the electron is in the ground state of the He atom.

The solution R in Eq. (6) gives the crossing point of the two diabatic potential curves. There are many possible crossing points corresponding to many different n_1 states into which the electron is to be transferred. According to the classical model, however, the electron transfer becomes possible when the diabatic potential energy before collision exceeds the maximum value of the potential barrier $-V_m$ formed between the projectile ion and the target atom:

$$\frac{-Z_1^*}{R} - \frac{(Z_1^*)^2}{2n_1^2} \geq -V_m,$$

(7)

and

$$V_m = [(Z_1^*)^{1/2}+(Z_1^*)^{1/2}]^2/R.$$

(8)

From Eqs. (6) and (7), the integer n corresponding to the state where the electron can be transferred is
determined as follows:
\[n \leq n_1 , \]
(9)
where
\[n_1 = \left[\frac{Z_1^+}{Z_2^+} \right] \frac{\left[(Z_1^+)^2 + 2 (Z_1^+ Z_2^+)^{1/2} \right]}{\left[(Z_1^+)^2 + 2 (Z_1^+ Z_2^+)^{1/2} \right]}^{1/2} \]
(10)

Then the distance \(R_a \) where one-electron transfer takes place is given by
\[R_a = \frac{(Z_1^+ - Z_2^+)}{((Z_1^+)^2/2n_1^2) - (Z_2^+)^2/2n^2} . \]
(11)

Assuming the probability of one-electron transfer to be \(\frac{1}{Z} \), the classical cross section \(\sigma_{q-1} \) is given as
\[\sigma_{q-1} = \frac{1}{2} \pi R_a^2 . \]
(12)

D. Comparison between the measured cross sections and the classical model

Figure 6 shows the measured cross sections at 0.8 keV/amu plotted as a function of the effective charge \(Z_1^* \) derived from Eq. (4) together with those calculated from Eq. (12) based on the classical one-electron model (dotted curve). The number of \(n \) in Fig. 6 represents the principal quantum number of the level of the ion (projectile plus one electron) into which the electron is captured. It is noted that almost all the measured cross sections come together on a single curve. The oscillation is enhanced for low-\(Z_1^* \) ions and tends to vanish for high-\(Z_1^* \) ions. This oscillatory behavior is similar to the calculated one, though the agreement in the phase of the oscillation is not so good. Since the present calculation based on the classical model is very crude, the poor agreement between the calculation and the experimental results is not surprising. The discrepancy is partly due to neglect of the tunnel effect, neglect of the polarization effect, and so on.

In essence, however, the oscillatory behavior of the cross sections observed in the present work is a good indication that in highly stripped ion collisions at low energies, the electron is captured selectively into the level with a particular quantum number \(n \) in the collision system. The observed oscillation is significant for low-\(Z_1^* \) ions. For low-\(Z_1^* \) ions, the energy level into which the electron is transferred has a small value of \(n \), and then its adjacent levels are largely separated. This causes a significant change in the cross section if the \(n \) value changes from \(n \) to \(n+1 \). On the other hand, for high-\(Z_1^* \) ions, the electron is captured into a level having a large \(n \) around which a number of energy levels are densely located. This gives rise to a minor change in the cross section if \(n \) is changed by one, and more than a single level may have a chance to capture one electron from the target atom. These should be reasons why the amplitude of the oscillation in the cross section tends to diminish towards higher-\(Z_1^* \) ions.

Such an oscillatory behavior should be dependent on the collision energy. The data of Gardner et al.,19 which were obtained at energies a few times as high as the present energy range, show oscillations around \(q = 4 \) for \(B^8^+ \), \(C^6^+ \), and \(N^8^+ \) ions, but the amplitude of their oscillation is smaller than the present one. The present classical model is essentially independent of energy. More sophisticated calculations would be desired.

ACKNOWLEDGMENTS

This work was carried out as a part of the Guest Research Program at the Institute of Plasma Physics, Nagoya University. The authors are grateful to Professor H. Kakihana, Director of the Institute, and to Emeritus Professor K. Takayama, the former Director of the Institute, for their encouragement throughout this work.
26 CROSS SECTIONS FOR ONE-ELECTRON CAPTURE BY HIGHLY...

Permanent address: Department of Liberal Arts, Kansai Medical University, Hirakata, Osaka 573, Japan.

†Permanent address: Department of Physics, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan.

‡Permanent address: Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan.

§Permanent address: Department of Electric Engineering, Doshisha University, Kyoto 602, Japan.

Permanent address: Nuclear Engineering Department, Kyushu University, Fukuoka 812, Japan.

**Permanent address: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184 Japan.

1Atomic and Molecular Processes in Controlled Thermonuclear Fusion. edited by M. P. C. McDowell (Plenum, New York, 1979).

5E. Salzborn and A. Müller, Ref. 2, p. 407.

LETTER TO THE EDITOR

Observation of electron capture into selective state by fully stripped ions from He atom

S Ohtani, Y Kaneko†, M Kimura‡, N Kobayashi†, T Iwai§, A Matsumoto, K Okuno†, S Takagi, H Tawara|| and S Tsurubuchi¶

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 2 June 1982

Abstract. Energy spectra of charge-changing projectile ions are measured for one-electron capture by fully stripped C and O ions from He atoms. The electron is selectively captured into a single level of principal quantum number n = 3 of C6+ and n = 4 of O7+, respectively, at a collision energy of 0.45 keV amu⁻¹.

Recently, total cross sections for one-electron transfer from He atoms into multi-charged B, C, N, O, F, Ne and S ions, including fully stripped ions, have been measured at low collision energies below 1.5 keV amu⁻¹ (Iwai et al 1982, Kaneko et al 1982). The measured cross sections are nearly independent of the collision energy investigated with only a few exceptions. When the cross sections are plotted as a function of the ionic charge q of isoelectronic projectile ions, strong oscillations in the cross sections are observed for all ions. This oscillatory behaviour is interpreted as follows. At low energies an electron is captured selectively into a level with a particular quantum number n. Such a level drastically changes from n to n + 1 with an increase of q. This level change results in an increase of the crossing distance of the potential curves: it causes a significant increase in the q dependence of the cross sections. Similar oscillations in cross sections have been reported in other collision systems (Bliman et al 1981, Mann et al 1981, Cocke et al 1981).

In order to see whether the oscillation is caused by the change of the level into which the electron is transferred in the collision system, we have measured energy spectra of charge-changing projectile ions scattered in the forward direction for the collision systems mentioned above. These measurements give us information on the level into which the electron is captured.

The experimental set-up is shown in figure 1. The ion beam extracted from an ion source of EBI type, called NICE-1, is focused, mass analysed by a sector magnet and well collimated by a pair of apertures of 1 mm in front of the target gas cell. The gas cell is 2 cm in length and its entrance and exit apertures are 0.8 mm and 1 mm in

† Permanent address: Department of Physics, Tokyo Metropolitan University, Setagaya-ku Tokyo 158, Japan.
‡ Permanent address: Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan.
§ Permanent address: Department of Liberal Arts, Kansai Medical University, Hirakata, Osaka 573, Japan.
|| Permanent address: Nuclear Engineering Department, Kyushu University, Fukuoka 812, Japan.
¶ Permanent address: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan.

0022-3700/82/150533 + 03$02.00 © 1982 The Institute of Physics
diameter, respectively. Ions which pass through the cell are decelerated by electrostatic lenses before entering a 127° cylindrical analyser. An entrance aperture of the decelerating lens system having 14 electrodes is located 22 mm behind the cell. The mean radius of the analyser is \(r = 125 \) mm and the slit widths are \(S_1 = 1.0 \) mm and \(S_2 = 1.5 \) mm. The deceleration voltage \(V_R \) is so adjusted that the energy of the ions passing the analyser is between 30–60(×q) eV. Then the energy resolution is just limited by the energy spread of incident ions extracted from NICE-1. It is usually

![Diagram](image)

Figure 1. Schematic view of the spectrometer used for ion energy analysis.

Figure 2. Energy gain and loss spectrum of scattered \(C^{5+} \) ions from \(C^{6+} + \) He collisions at a collision energy of 6 keV. No peak was observed without target He gas (\(P_t \sim 0 \)).
0.8 × q eV, depending a little on the current density of the electron beam and on the potential distribution applied to the drift tubes in the ion source. The energy spectra of charge-changing projectiles are obtained by scanning an additional variable voltage superimposed on the deceleration voltage while the deflection voltage V_D of the analyser is fixed. The energy-analysed ions are detected by an electron multiplier (EMT).

In figure 2 is shown the energy gain spectrum of scattered C$^5+$ ion from C$^6+$ + He collisions. Only a single peak is observed, which corresponds to the following electron transfer process: C$^6+$ + He(1s2) → C$^5+$($n = 3$) + He(1s).

For the case of O$^8+$ + He collisions, as seen in figure 3, the electron is selectively captured into the $n = 4$ level of O$^7+$. This change of the level from $n = 3$ to $n = 4$ gives rise to a significant difference in the cross sections for one-electron capture by C$^6+$ and O$^8+$ ions. Actually, as reported previously (Iwai et al 1982), the cross section for O$^8+$ is about three times larger than that for C$^6+$. Similar measurements are in progress for various projectiles including fully stripped, H-, He- and Li-like ions.

Figure 3. Energy spectrum of scattered O$^7+$ ions from O$^8+$ + He collisions at a collision energy of 8 keV.

References

LETTER TO THE EDITOR

Two-electron capture into autoionising states of $\text{N}^{5+}(3l3l')$ and $\text{O}^{5+}(1s3l3l')$ in collisions of N^{7+} and O^{7+} with He

S Tsurubuchi†, T Iwai‡, Y Kaneko§, M Kimura¶, N Kobayashi¿, A Matsumoto, S Ohtani, K Okuno§, S Takagi and H Tawara¶

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 10 August 1982

Abstract. Transfer ionisation processes are studied for the $\text{N}^{7+}+\text{He}$ and $\text{O}^{7+}+\text{He}$ systems by means of ion beam spectroscopy at 7 keV. The autoionising states $(3l3l')$ of N^{5+} and $(1s3l3l')$ of O^{5+} are identified.

The identification of satellite lines of highly charged ions plays an important role in the spectroscopic diagnostics of high-temperature sources such as laser-produced plasmas and vacuum spark sources, and also in the observation of the solar corona. To the authors' knowledge, however, no experimental data is available for those satellite lines with the configuration of $\text{N} \, \, \, \nu (3l\,n'')$ and $\text{O} \, \, \, \nu (1s3l\,n'')$.

In our previous paper, we showed that ion beam spectroscopy is one of the very powerful tools in determining the final electronic state of the projectile ions after charge transfer collision with He (Ohtani et al 1982). The ion source used is the NICE-1 built at IPPJ. A detailed description of the present experimental apparatus will be published soon. Briefly, a 127° cylindrical energy analyser with a retardation lens system is set behind a target cell to measure the energy gain ΔE of the charge-changed projectile in the forward direction.

In figure 1 is shown the energy gain spectrum of N^{6+} ions obtained in $\text{N}^{7+}+\text{He}$ collision. The dominant peak around $\Delta E = 17$ eV is assigned as being due to the selective one-electron capture,

$$\text{N}^{7+}+\text{He}(1s^2) \rightarrow \text{N}^{6+}(4l) + \text{He}^+(1s) + \Delta E_1.$$

The energy balance consideration in figure 2(a) shows that the N^{6+} ions should be in the $n = 4$ state. Furthermore, a small peak around $\Delta E = 60$ eV is recognised. The intensity of the peak increases with an increase of target pressure as shown in the figure. The purity of the target He gas was increased up to 99.999% to ensure no impurity effect involved in the spectrum. The typical resolution of the analyser is less than 4.8 eV in the present case. Thus, we are certain that the peak is due to N^{6+} ions.

†Permanent address: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184, Japan.
‡Permanent address: Department of Liberal Arts, Kansai Medical University, Hirakata, Osaka 573, Japan.
§Permanent address: Department of Physics, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan.
¶Permanent address: Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan.
¿Permanent address: Nuclear Engineering Department, Kyushu University, Fukuoka 812, Japan.

0022-3700/82/200733-05$02.00 © 1982 The Institute of Physics
Figure 1. Energy gain spectra of N⁶⁺ obtained in N⁷⁺ + He collisions at 0.47 keV amu⁻¹. The numbers with the various spectra are the values of NL in units of 10¹³ cm⁻².

Figure 2. Schematic energy level diagrams for (a) N⁷⁺ + He system, and (b) O⁷⁺ + He system. The values of the energy levels are taken from Bashkin and Stoner (1975), Pradhan et al (1981), and Ho (1979).
formed through a different reaction channel from the one-electron transfer process in which an electron is captured into the \(n = 3 \) state of \(\text{N}^5^+\).

According to the calculation of Ho (1979), the doubly excited autoionising states \(1\text{S}, 1\text{P}, \) and \(3\text{P} \) in which two electrons occupy the \(n = 3 \) shell are located 7.7760 to 10.2160 Ryd below the \(\text{N}^7^+ \) state. In figure 2(a), the \(1\text{S}(1) \) and \(1\text{P}(1) \) states are presented. The energy gain \(\Delta E_2 \) (see figure 2(a)) estimated from those levels is in good harmony with the result obtained from the position of the second weak peak in the present experiment. Thus, we assign the small peak observed in the spectrum as being due to the following transfer ionisation via two-electron capture into the autoionising states of \(\text{N}^5^+\),

\[
\text{N}^7^+ + \text{He}(1s^2) \rightarrow \text{N}^5^+**(3/3l^+) + \text{He}^2^+ + \Delta E_2 \\
\rightarrow \text{N}^6^+ + \text{He}^2^+ + \text{e}.
\]

Figure 3 shows the schematic potential curves relevant to the proposed mechanism. Another transfer ionisation, in which one-electron capture into \(\text{N}^6^+\) and target ionisation of \(\text{He}^+ \) take place simultaneously, would contribute to continuum background spectra and will not form a peak. Such a continuum was not observed in the present spectrum.

The \(\text{O}^6^+\) spectrum obtained in the \(\text{O}^7^+ + \text{He} \) collision is given in figure 4. A similar pattern of spectrum is obtained but the second peak is more clearly recognised. The first dominant peak is assigned as being due to one-electron capture into the \(1s4l \) state of \(\text{O}^6^+\) from figure 2(b),

\[
\text{O}^7^+(1s) + \text{He}(1s^2) \rightarrow \text{O}^6^+*(1s4l) + \text{He}^+ + \Delta E_1.
\]

From the resolution of the analyser, the second peak corresponds neither to the one-electron capture into \(\text{O}^6^+*(1s2l) \) nor to \(\text{O}^5^+(1s3l) \). Because the energy positions

![Figure 3. Schematic potential curves relevant to the energy gain spectrum of \(\text{N}^6^+\) in \(\text{N}^7^+ + \text{He} \) collisions at 0.47 keV amu\(^{-1}\).](image-url)
of the \((1s3s3p)^2P \) and \((1s3s)^2S \) states of \(\text{O}^{5++} \) (Pradhan et al 1981) agree quite well with the maximum position of the weak peak, we provisionally assign this peak as due to the following transfer ionisation process by means of two-electron capture into the autoionising states of \(\text{O}^{5++} \),

\[
\text{O}^{7+}(1s) + \text{He}(1s^2) \rightarrow \text{O}^{5++}(1s3l^l') + \text{He}^{2+} + \Delta E_2 \\
\rightarrow \text{O}^{6+} + \text{He}^{2+} + e.
\]

The importance of the transfer ionisation has been pointed out by Kishinevskii and Parillis (1969), and recently by Groh et al (1982) in the measurement of recoil target ions in coincidence with the projectile ions. The transfer ionisation process in multiply charged ion collisions has been studied by measuring the energy spectrum of the ejected electrons (Winter et al 1977, 1978, Woerlee et al 1979).

Several types of transfer ionisation are possible according to the scheme of potential curve interactions. These are well compiled in the literature of Niehaus (1980). The two-electron capture into the autoionising state of the projectile ion with subsequent Auger effect is typical of transfer ionisation (Kishinevskii and Parillis 1969).

The lifetime of the \(^1\text{P}(1) \) and \(^1\text{S}(1) \) states of \(\text{N}^{5++} \) can be estimated as \(1.6 \times 10^{-15} \) s and \(4.9 \times 10^{-15} \) s respectively from the resonant parameter \(\Gamma \) of Ho (1979). In the present experiment, the kinetic energy of \(\text{N}^{7+} \) projectile is \(0.47 \) keV amu\(^{-1} \) which corresponds to the velocity of \(3.0 \times 10^7 \) cm s\(^{-1} \). Assuming the effective interacting distance is about 10 au, then the collision time is comparable with the lifetimes of the doubly excited states \(^1\text{P}(1) \) and \(^1\text{S}(1) \) of \(\text{N}^{5+} \). A molecular autoionisation would be possible to some extent as well as atomic autoionisation of \(\text{N}^{5+} \). The energy profile of ejected electrons will be asymmetric and have a tail to the lower energy side. It is noticed that the observed transfer ionisation peak has a tail extending to the side of higher energy gain, which may be considered as a reflection of the molecular
autoionisation process. A similar situation seems to be the case for the spectrum observed in the $O^7^+ + He$ collision. The measurement of the energy spectrum of ejected electrons will give a definite answer to this question.

The total cross sections for $N^7^+ + He \rightarrow N^6^+ (n = 4) + He^+$ and $O^7^+ + He \rightarrow O^6^+ (n = 4) + He^+$ are 1.1×10^{-15} and 1.3×10^{-15} cm2 respectively at 0.8 keV amu$^{-1}$ (Iwai et al. 1982). The cross sections for the two-electron capture into the autoionising states of N^5^{++} and O^5^{++} in $N^7^+ + He$ and $O^7^+ + He$ collisions are one order of magnitude smaller than that of the one-electron capture process. In conclusion, we have found, for the first time, the two-electron capture processes into the doubly excited autoionising states of N^5^+ and O^5^+ converging to the $n = 3$ state of N^6^+ and O^6^+ in collisions of N^7^+ and O^7^+ with He.

References

LETTER TO THE EDITOR

The \((n, l)\) distributions in electron capture reactions for
C\(^{3+}\), N\(^{4+}\) and O\(^{5+}\) ions colliding with He

M Kimura†, T Iwai‡, Y Kaneko§, N Kobayashi¶, A Matsumoto,
S Ohtani, K Okuno§, S Takagi, H Tawara|| and S Tsurubuchi¶

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 4 October 1982

Abstract. Distributions of captured electrons in the reaction \(A^{q+} + \text{He} \rightarrow A^{(q-1)+}(n, l) + \text{He}^+\) over the final-state quantum numbers \(n\) and \(l\) are measured using a beam spectroscopy method at the energy of 1.0 keV. Projectile ions \(A^{q+}\) are Li-like species of carbon \((q = 3)\), nitrogen \((q = 4)\) and oxygen \((q = 5)\).

Electron capture by highly-charged ions from neutral atoms has been intensively studied in recent years. Most work has been directed toward the determination of total electron capture cross sections in such collisions. In a previous paper (Iwai et al 1982) we reported measurements of the cross sections for one-electron capture from He by highly stripped ions \(A^{q+}\) \((A = \) boron, carbon, nitrogen, oxygen, fluorine, neon and sulphur\) below 1.5 keV amu\(^{-1}\), and found strong oscillatory behaviour of cross sections as a function of charge \(q\). This observation was qualitatively explained using the classical one-electron model (Ryufuku et al 1980). One of the important assumptions of this model is that an electron is transferred to a particular single energy level of charge-changed ions. As \(q\) increases, the principal quantum number \(n\) of the capturing level increases in a stepwise fashion. As a result the cross sections show oscillatory structure.

With this prediction in mind, we have recently measured the energy gain spectra of the charge-changed ions in collisions of fully stripped, H-like and He-like ions of C, N and O with He at the energies of 1\(q\) and 2\(q\) keV (Ohtani et al 1982, Tsurubuchi et al 1982, Tawara et al 1982, Okuno et al 1982). It was confirmed that an electron really transfers to a single level \(n\) of the ions in the process of one-electron capture and that the number \(n\) agrees with that of the classical model except in one case (Tawara et al 1982).

Though the energy resolution of our apparatus is good enough to resolve the \(n\) distributions for the above-mentioned systems, distributions of orbital angular quantum number \(l\) within the same principal quantum number \(n\) could not be resolved.

† Present address: Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan.
‡ Present address: Department of Liberal Arts, Kansai Medical University, Hirakata, Osaka 573, Japan.
§ Present address: Department of Physics, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan.
¶ Present address: Department of Energy Conversion, Kyushu University, Kasuga, Fukuoka 816, Japan.
|| Present address: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan.

0022-3700/82/230851+06$02.00 © 1982 The Institute of Physics
Both theoretical and experimental studies are quite scarce on the l distributions. Theoretical studies have been exclusively directed toward the collisions of fully-stripped ions with H atoms (Ryufuku et al 1979, Salop 1979). Since the product ions in such collision systems have almost degenerate sublevels within one principal quantum number, their predictions cannot be applied to our observations. Winter et al (1977) and Matsumoto et al (1980a, b) have measured cross sections for one-electron capture into several excited (n, l) states by observing radiations from charge-changed ions in collisions of 100 keV Ne\(^{q+}\) (q = 1-4) with He, H\(_2\) and Ar, and Ar\(^{2+}\) of keV energy with Na, respectively. Afrosimov et al (1977) and Huber (1980) have also determined one-electron capture cross sections into several states by energy-loss spectroscopy for the systems Ar\(^{q+}\) (q = 3-7)-He, and for the systems Ar\(^{2+}\)-He, Ne and Ar, respectively.

The present paper is concerned with electron-capturing collisions of Li-like ions of C, N and O on He. Since product ions from one-electron capture are Be-like and they have wide energy separations among sublevels, the l distributions may be observed as well as the n distributions. These distributions are compared with cross sections calculated by means of the Landau–Zener model.

The present measurements were performed using a beam spectroscopy method and procedures described previously (Ohtani et al 1982). In all cases studied here the n distributions are consistent with the prediction of the classical one-electron model; C\(^{2+}\)(n = 2), N\(^{3+}\)(n = 2) and O\(^{4+}\)(n = 3).

(i) C\(^{3+}\)+He. In figure 1 is shown the energy spectrum at a collision velocity of \(2.1 \times 10^7\) cm s\(^{-1}\). Isotope gas \(^{13}\)CO was used to separate impurity ions having \(m/q = 4\). In this figure the calculated energy levels are also indicated which correspond to the

![Graphical representation of energy levels and spectrum](image)

Figure 1. Energy gain spectrum of forward scattered C\(^{2+}\) ions from C\(^{3+}\)+He collisions at a collision velocity of \(2.1 \times 10^7\) cm s\(^{-1}\).
levels of the charge-changed C_2^+ ions for the process, $C^3^+ + \text{He} \rightarrow C_2^+ (nl) + \text{He}^+(1s)$, together with the energy profile of the primary C_3^+ ions. All the peaks observed correspond to the electron configurations, $1s^22l2l'$, which have six terms. Relative intensity for each term was determined from the best fit to the observed spectrum by deconvolution with the energy profile of the primary ions. Normalisation of the relative intensities to the total one-electron capture cross section, which was measured previously at a slightly higher velocity 2.6×10^7 cm s$^{-1}$, gives the cross sections for the final channels. They are listed in table 1 (i) along with the energy gain values ΔE, calculated from tabulated values (Bashkin and Stoner 1975). One can estimate the

<table>
<thead>
<tr>
<th>Final ionic state</th>
<th>ΔE (eV)</th>
<th>R_c (Å)</th>
<th>Measured σ^* (10^{-16} cm2)</th>
<th>LZ σ^* (10^{-16} cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) C_3^+ ($1s^22s^22S$) incident</td>
<td>0.67</td>
<td>43.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1D</td>
<td>5.21</td>
<td>5.5</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>3P</td>
<td>6.26</td>
<td>4.6</td>
<td>0.3</td>
<td>0.17</td>
</tr>
<tr>
<td>2s2p 1P</td>
<td>10.61</td>
<td>2.7</td>
<td>11.4</td>
<td>10.1</td>
</tr>
<tr>
<td>3P</td>
<td>16.80</td>
<td>1.7</td>
<td>2.8</td>
<td>0.01</td>
</tr>
<tr>
<td>2s2 1S</td>
<td>23.30</td>
<td>1.2</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14.7 ± 2.9b</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final ionic state</th>
<th>ΔE (eV)</th>
<th>R_c (Å)</th>
<th>Measured σ^* (10^{-16} cm2)</th>
<th>LZ σ^* (10^{-16} cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii) N_4^+ ($1s^22s^22S$) incident</td>
<td>23.70</td>
<td>1.8</td>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td>1D</td>
<td>29.47</td>
<td>1.5</td>
<td>~ 0</td>
<td>0.001</td>
</tr>
<tr>
<td>3P</td>
<td>31.11</td>
<td>1.4</td>
<td>~ 0</td>
<td>0</td>
</tr>
<tr>
<td>2s2p 1P</td>
<td>36.68</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3P</td>
<td>44.54</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2s2 1S</td>
<td>53.15</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3.0 ± 0.9c</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final ionic state</th>
<th>ΔE (eV)</th>
<th>R_c (Å)</th>
<th>Measured σ^* (10^{-16} cm2)</th>
<th>LZ σ^* (10^{-16} cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iii) O_5^+ ($1s^22s^22S$) incident</td>
<td>6.93</td>
<td>8.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3P</td>
<td>8.34</td>
<td>6.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2s3d 1D</td>
<td>13.36</td>
<td>4.3</td>
<td>small</td>
<td>2.8</td>
</tr>
<tr>
<td>3D</td>
<td>14.83</td>
<td>3.9</td>
<td>small</td>
<td>5.3</td>
</tr>
<tr>
<td>2s3p 2P</td>
<td>17.04</td>
<td>3.4</td>
<td>e</td>
<td>8.0</td>
</tr>
<tr>
<td>1P</td>
<td>17.30</td>
<td>3.3</td>
<td>e</td>
<td>7.0</td>
</tr>
<tr>
<td>2s3s 1S</td>
<td>19.72</td>
<td>2.9</td>
<td>e</td>
<td>5.9</td>
</tr>
<tr>
<td>3S</td>
<td>21.49</td>
<td>2.7</td>
<td>small</td>
<td>2.8</td>
</tr>
<tr>
<td>Total</td>
<td>22.7 ± 4.5d</td>
<td>31.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a: Total one-electron capture cross sections measured at slightly higher velocities are decomposed into the constituents according to their relative peak heights.

b,c,d: Total one-electron capture cross sections at collision velocities, 2.6, 2.9 and 3.0×10^7 cm s$^{-1}$ respectively (Iwai et al 1982), while the present measurements were performed at 2.1, 2.3 and 2.5×10^7 cm s$^{-1}$.

e: Relative cross sections could not be determined.
crossing distance R_c for the two diabatic potential curves from the following relation, by considering pure Coulomb repulsion in the final channel $A^{(q-1)+}(n, l) + \text{He}^+$ and disregarding polarisation attractions in the initial channel $A^{q+} + \text{He}$,

$$R_c = 14.4(q - 1)/\Delta E \ (\text{Å})$$ \hspace{1cm} (1)

where ΔE is expressed in eV. The R_c value obtained from equation (1) is also listed in table 1.

According to the Landau–Zener model, the probability of a transition between the two states at a crossing distance R_c is given by

$$p = \exp(-2H_{12}^2/v|\Delta F|)$$ \hspace{1cm} (2)

where

$$\Delta F = \frac{d}{dR} (H_{11} - H_{22})_{R = R_c}.$$ \hspace{1cm} (3)

Here v is the radial velocity and H_{12} is the coupling matrix element between the initial and final states at the crossing point. For the case of a single crossing, the probability of a transition from the initial state to the final state is given by the relation:

$$P = 2p(1 - p).$$ \hspace{1cm} (4)

This expression can be generalised to the case of N crossings as described by Salop and Olson (1976) if interference between adjacent channels are neglected. The interaction potential H_{12} at each crossing point is estimated using the semi-empirical formula given by Olson and Salop (1976). By integrating the probabilities over the impact parameter, the cross section for each channel can be obtained. The calculations of the Landau–Zener cross sections are carried out for the collision velocity of $2.1 \times 10^7 \text{ cm s}^{-1}$ and the results are also listed in table 1 (i). Compared with the observation the Landau–Zener cross section gives a similar total one-electron capture cross section, though indicating stronger selectiveness to the $2s2p \ ^1\text{P}$ state.

(ii) $\text{N}^{4+} + \text{He}$. The energy spectrum for the $\text{N}^{4+} + \text{He}$ collision is shown in figure 2. One strong peak and a few weak peaks are observed. The strong one is assigned to the $1\text{s}^22\text{p}^2\ ^1\text{S}$ state. A small peak at around 10 eV remains almost unchanged even when the target He is evacuated. Therefore it is thought to come from the background gas ($1 \times 10^{-7} \text{ Torr}$). Since the cross section of one-electron capture for this collision system is relatively small, the background signal becomes observable. A small tail located at the higher energy wing of the main peak is due to $2\text{p}^2 \ ^1\text{D}$ and possibly ^3P. It is noted that the two-electron process, in which the one-electron capture together with the projectile excitation ($2s \rightarrow 2p$) occurs simultaneously, is predominant compared with simple one-electron capture. Energy gain values, crossing distances of potential curves calculated from equation (1) and relative cross sections determined similarly as for the $\text{C}^{3+} + \text{He}$ case are listed in table 1 (ii). In this case the crossing distances R_c are so small that our simple approximations to estimate R_c and H_{12} would make serious errors. This could be the reason for a significant discrepancy between the calculated cross sections and the measured ones.

(iii) $\text{O}^{5+} + \text{He}$. The observed energy spectrum is shown in figure 3. A broad peak corresponding to $\text{O}^{4+}(n = 3)$ is observed. Since the $n = 3$ state consists of substates densely located, each substate could not be resolved. Deconvoluting the observed
Figure 2. Energy gain spectrum of forward scattered N$^3^+$ ions from N$^4^+$ + He collisions at a collision velocity of 2.3×10^7 cm s$^{-1}$.

Figure 3. Energy gain spectrum of forward scattered O$^5^+$ ions from O$^6^+$ + He collisions at a collision velocity of 2.5×10^7 cm s$^{-1}$.

spectrum with the primary energy profile does not give a unique solution in this case because of the too narrow separations of the sublevels. One can say at least that the 2s3l states are selectively populated, and among them the cross sections for the 2s3d levels are much smaller than those for the 2s3s and the 2s3p levels. Energy gain
values and crossing distances of the potential curves are listed in table 1 (iii) along with the Landau–Zener cross sections.

In all the cases studied here any signals due to endothermic processes are not observed. As seen in table 1, the process of one-electron capture seems to be most favoured when the potential curve of the final state crosses with that of the initial state at a distance of about 1.5–4 Å. These results are consistent with those observed in other multicharged-ion–He systems (Tawara et al 1982, Okuno et al 1982). Regardless of one- or two-electron processes, the crossing distance appears to be most important in determining the l distributions.

References

Ryufuku H and Watanabe T 1979 Phys. Rev. A 20 1828
I. INTRODUCTION

Recently one-electron—capture cross sections from neutral He atoms by multiply charged B, C, N, O, F, Ne, and S ions including fully stripped ions have been measured at collision energies below 1.5 keV/amu. A remarkable oscillation of cross sections with incident-ionic charge \(q \) was found. Similar oscillation was predicted by Ryufuku, Sasaki, and Watanabe for the case of the H atom target using a classical model of charge transfer. The oscillation has been interpreted as follows. The transferred electron is captured selectively into a shell having a principal quantum number \(n \). This quantum number changes from \(n \) to \(n+1 \) at some value of \(q \) as \(q \) is increased, with an accompanying drastic increase in cross section. Before the quantum number \(n \) changes, the larger \(q \) gives the smaller interaction distance, leading instead to a gradual decrease in cross section. After all, the cross sections show a sawtooth type oscillation with the change of ionic charge \(q \). Though the classical model may be crude, the model has been found to be adequate also for the case of the He target. The essential assumption of this model is that the electron is captured only into a single shell. We have made a series of experiments intending to find some evidence for it and to determine into which shell the transferred electron goes. The results obtained should be most important for basic understanding of charge transfer involving multiply charged ions and useful for development of x-ray laser and controlled-thermonuclear-fusion research.

In our preceding papers, energy gains of the charge-state changed projectile ions scattered into the forward direction for the collisions of fully stripped C\(^{6+}\), N\(^{7+}\), and O\(^{8+}\) with neutral He atoms have been reported, and it has been verified that an electron is captured selectively into a shell of principal quantum number \(n = 3, 4, \) and 4 of the product C\(^{5+}\), N\(^{6+}\), and O\(^{7+}\) ions, respectively. In the continuation of the previous experiments for fully stripped ions, energy-spectroscopic studies of collisions of hydrogen-like and helium-like ions of carbon, nitrogen, and oxygen with neutral He atoms have been made systematically. The two-electron—capture process and the transfer ionization process have also been studied in addition to the one-electron—capture process; among these, the transfer ionization process has been reported for the collision systems of N\(^{7+}\) + He and O\(^{7+}\) + He.

In the present paper, we report mainly on the one-electron—capture process at keV collision energies. The experimental details are described in Sec. II. The measured translation-energy spectra are displayed and similarity among the spectral patterns for ions having the same charge \(q \) is discussed in relation to diabatic potential curves concerned in Sec. III. Concluding remarks follow in Sec. IV, where the results obtained from the series of energy-spectroscopic measurements including fully stripped ions are compared with the classical one-electron theory.

II. EXPERIMENTS

The apparatus used and the experimental procedure have been reported in Ref. 3. Therefore, we describe here the principle of translation-energy spectroscopy and the related problems such as determination of the parameter depending on the apparatus geometry and the energy resolution in detail. A brief description of the experimental setup is given.

A. Principle of translation-energy spectroscopy

We consider the following electron-capture process at low energies:

\[
\text{Product C}^{5+}, \text{N}^{6+}, \text{and O}^{7+} \text{ions, respectively.}\\
\text{In the continuation of the previous experiments for fully stripped ions, energy-spectroscopic studies of collisions of hydrogen-like and helium-like ions of carbon, nitrogen, and oxygen with neutral He atoms have been made systematically. The two-electron—capture process and the transfer ionization process have also been studied in addition to the one-electron—capture process; among these, the transfer ionization process has been reported for the collision systems of N}^{7+} + \text{He and O}^{7+} + \text{He.}\\
\]
\[A^q_+ + B \rightarrow A^{q'}_+ + B^{q'} + Q, \quad q = q' + r \]

where \(Q \) is the total inelastic energy gain. In this inelastic electron-capture process, the incident projectile ion \(A^{q+} \) with the mass \(M_1 \) and the energy \(E_q \) is scattered into an angle of \(\theta \) with the energy \(E_q' \); meanwhile the neutral target \(B \) atom with the mass \(M_2 \) is recoiled with the energy \(E_r \). Then, the total gain \(Q \) is defined as

\[Q = (E_q' + E_r) - E_q. \]

In this energy spectroscopy, the gain of the kinetic energy of the scattered ion. \(E_{\Delta E} = E_q' - E_q \), may be measured at the scattering angle \(\theta \). The kinematical consideration leads to the following relation:

\[\Delta E(E_q, Q, \theta) = \frac{2M_1 M_2}{(M_1 + M_2)^2} E_q \left[1 + \frac{M_1}{M_2} \sin^2 \theta + \frac{M_1 + M_2}{M_1} \frac{Q}{2E_q} \right] - \cos \theta \left[1 - \left(\frac{M_1}{M_2} \right)^2 \sin^2 \theta - \frac{M_1 + M_2}{M_2} \frac{Q}{E_q} \right]^{1/2} \]

If it is assumed that the energy gain is much smaller than the incident kinetic energy of the projectile ion, that is, \(Q \ll E_q \), the energy gain of the projectile ion scattered into the zero-degree direction (\(\theta \approx 0^\circ \)) becomes independent of \(E_q \) as follows:

\[\Delta E(\theta \approx 0^\circ) = \frac{Q}{2}. \]

That is, by measuring the energy gain \(\Delta E \) of the projectile ion (energy gain spectroscopy) scattered into the forward direction, we can determine straightforwardly the reaction energy \(Q \) which provides important information on mechanisms in the inelastic processes.

In order to get good energy resolution, the energy of the projectile ions should be reduced before they enter an electrostatic energy analyzer as shown schematically in Fig. 1. If the decelerating potential to the projectile ion is \(V_R \), the energy of the incident projectile ion is reduced to \(E_q - qV_R \) at the entrance of the energy analyzer. When the ion is to pass through the analyzer of which the deceleration voltage is \(V_D \) and to reach a detector, the following relation should be fulfilled:

\[E_q - qV_R = qKV_D, \]

(5)

where \(K \) is a constant depending mainly on the geometry of the analyzer and probably on the deceleration voltage of the analyzer \(V_D \). On the other hand, the energy of the charge-state-changed projectile ion \((A^{q'+}) \) with the charge \(+q' \) has to be decelerated through \(V_D \), which is different from \(V_R \) for the incident projectile ion in order to pass through the analyzer with the same deflection voltage \(V_D \) as that for the incident projectile ion and to reach the detector. Then, the following condition is necessary:

\[E_q - qV_R = q'KV_D. \]

From the energy conservation, we obtain the following relation:

\[V_R = (q/q')V_D + [(q - q')/q']KV_D + (1/q')\Delta E. \]

That is, we can determine the energy change \(\Delta E \) in the absolute scale by scanning the decelerating potential \(V_R \) for the charge-state-changed projectile ions while keeping the deflection voltage \(V_D \) constant, provided that \(K \) is known.

B. Experimental setup and determination of the parameter \(K \)

Actually, projectile ions are produced in an EBIT-type ion source called NICE-1 and are injected into a collision cell after acceleration and mass-charge analysis. Ions passing through the cell are decelerated through electrostatic lenses, are energy analyzed by an electrostatic 127° cylindrical analyzer, and finally reach a Channeltron-type detector as shown in Fig. 1. The decelerating lens system having 14 electrodes consists of a part of linear field distribution, an einzel lens, and a pair of deflection electrodes to control the position of projectile ions and to optimize the transmission through the energy analyzer as well as to obtain good energy resolution. Dimensions of the present apparatus are as follows: The collision cell is 2 cm in length and its entrance and exit apertures are 0.8 and 1.0 mm in diameter, respectively; the first decelerating electrode is located 22 mm behind the cell; the entrance and exit slit widths of the analyzer with the mean radius of 125 mm are 1.0 and 1.5 mm, respectively. This geometry enables one to detect the ions scattered only into an extremely forward direction.

By the use of 10-keV \(C^{5+} \) ions, the energy resolution of the present analyzer was tested as a function of the deflection voltage \(V_D \). When the voltage \(V_D \) is reduced, the resolution becomes high and then tends to be nearly constant; a typical operating resolution was about 0.8 X 5 = 4.0 eV with the deflection voltage \(V_D \) of 25-35 V after the ion energy was decelerated by about 90% of the original acceleration energy. Therefore, the deflection voltage \(V_D \) was usually set at 30 V throughout the present experiment. From these experiments it was found that the energy resolution is mainly limited by the energy spread of extracted ions from the NICE-1 and it was estimated to be smaller than 0.8 x 5 eV under the continuous operation mode, which is much smaller than that prevailed in the litera-
The translation-energy spectra of the charge-state-changed projectile ions are obtained by scanning the decelerating voltage \(V_R \) while the deflection voltage \(V_D \) of the analyzer is kept at the same voltage, 30 V, as that for the incident projectile ions. In order to obtain the absolute scale of the energy in the energy spectra, the parameter \(K \) in Eq. (7) has to be determined. First, we determined \(K \) using a \(\text{Li}^+ \)-ion beam which is generated from a thermal-emission-type ion source. In this case the ion energy is entirely determined by the acceleration voltage, and then \(K \) is found to be equal to 1.21. This number is very close to that estimated from the geometry of the analyzer \((K = 1.24)\). Secondly, we have checked this number by measuring the relationship between the deflection voltage \(V_D \) and the decelerating voltage \(V_R \) based upon Eq. (5). It was found that \(V_D \) changes very much linearly with \(V_R \), resulting in \(K = 1.213 \pm 0.003 \) for the deflection voltage ranging from 20 to 40 V, which is very close to the number obtained with \(\text{Li}^+ \)-ion beams. Therefore, \(K = 1.21 \) is used in the present energy analysis.

The stable-isotope gases \(^{18}\text{O}_2\), \(^{15}\text{N}_2\), and \(^{13}\text{C}^0\) are used for source gases in order to separate the highly stripped ions from impurity ions. The helium gas used for the target is in a research grade with 99.999% purity. Background pressures were less than \(10^{-10}\) Torr at the ion source and \(10^{-7}\) Torr at the outside of the collision cell. Under the operation condition, the source pressure was around \(10^{-9}\) Torr, the target pressure in the cell was kept at about \(10^{-5}\) Torr, and the pressure outside the cell was about \(10^{-5}\) Torr.

III. RESULTS AND DISCUSSION

The energy-spectroscopic measurements have been made for hydrogenlike and heliumlike ions of oxygen, nitrogen, and carbon such as \(\text{O}^+, \text{N}^+, \text{C}^+ \) at the energies of \(q \) and \(2q \) keV, where \(q^+ \) is the charge of the projectile ion incident upon the neutral-helium target. The present experiment has been made in extension of the previous one \(^4\) for fully stripped ions colliding with He. In this section, however, the experimental results are presented and classified according as the ionic charge state \(q \) rather than the isoelectronic sequence of the incident projectiles, because good similarity is found in the spectra obtained for the ions with the same incident-ionic charge state \(q \). The measured energy gains \(\Delta E \) of the charge-state-changed projectile ions are compared to the reaction energies \(Q \) calculated from the book of Bashkin and Stoner \(^7\) and then the electron-capturing levels of charge-state-changed projectiles are determined.
TABLE I. Observed energy gains and related levels of charge-state-changed projectiles. Energy gain ΔE is determined from the peak position in the energy spectrum measured. The reaction energy Q is calculated with energy levels given by Bashkin and Stoner (Ref. 7). R_e is the distance of diabatic potential curves in consideration of the polarization for the initial channel and the Coulomb repulsion for the final channel; note that R_e is calculated by the use of the ionic charge state q. R_s is an internuclear distance limit at which an electron can get over the potential barrier between target and projectile in the classical model [see Eq. (14) in text].

<table>
<thead>
<tr>
<th>Incident</th>
<th>ΔE (eV)</th>
<th>ΔE (eV)</th>
<th>Q (eV)</th>
<th>R_e (Å)</th>
<th>R_s (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O^{7+}</td>
<td>18.0a</td>
<td>$O^{4+}(1s4p^3P)$</td>
<td>16.95</td>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s4d^1L^1D)$</td>
<td>17.05</td>
<td>5.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s4d^1L^3F)$</td>
<td>17.12</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s4s^3S)$</td>
<td>17.45</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s4p^3P)$</td>
<td>17.46</td>
<td>4.99</td>
<td>4.4</td>
</tr>
<tr>
<td>N^{7+}</td>
<td>16.8b</td>
<td>$N^{4+}(4f^2F)$</td>
<td>17.08</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(4d^2D)$</td>
<td>17.09</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(4e^2S)$</td>
<td>17.10</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(4p^2P)$</td>
<td>17.10</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td>O^{5+}</td>
<td>29.5</td>
<td>$O^{3+}(1s23d^22D)$</td>
<td>29.89</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s23p^2P)$</td>
<td>30.94</td>
<td>2.26</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s23s^2S)$</td>
<td>34.18</td>
<td>2.26</td>
<td></td>
</tr>
<tr>
<td>N^{5+}</td>
<td>30.0b</td>
<td>$N^{3+}(1s3p^3P)$</td>
<td>29.51</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3d^1D)$</td>
<td>29.89</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3d^1D)$</td>
<td>29.93</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3p^3P)$</td>
<td>30.78</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3s^3S)$</td>
<td>32.66</td>
<td>2.34</td>
<td>4.2</td>
</tr>
<tr>
<td>C^{++}</td>
<td>29.0a</td>
<td>$C^{3+}(3s^23D)$</td>
<td>29.84</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(3s^23S)$</td>
<td>29.86</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(3p^2P)$</td>
<td>29.86</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td>N^{4+}</td>
<td>16.0a</td>
<td>$N^{2+}(1s23d^22D)$</td>
<td>13.24</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s23p^2P)$</td>
<td>14.07</td>
<td>4.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s23s^2S)$</td>
<td>16.75</td>
<td>3.50</td>
<td>3.9</td>
</tr>
<tr>
<td>C^{++}</td>
<td>13.6a</td>
<td>$C^{2+}(1s3p^3P)$</td>
<td>12.98</td>
<td>4.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3d^1D)$</td>
<td>13.21</td>
<td>4.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3d^1D)$</td>
<td>13.24</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3p^3P)$</td>
<td>13.97</td>
<td>4.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3s^3S)$</td>
<td>14.00</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s3s^3S)$</td>
<td>15.44</td>
<td>3.78</td>
<td>3.9</td>
</tr>
<tr>
<td>C^{++}</td>
<td>31</td>
<td>$C^{2+}(1s23p^2P)$</td>
<td>31.91</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(1s23s^2S)$</td>
<td>39.91</td>
<td>1.35</td>
<td>3.6</td>
</tr>
</tbody>
</table>

aTaken from Ref. 4.
bTaken from Ref. 1.

A. O^{6+}, N^{4+} + He collisions

The energy spectra of the product O^{5+} ion in the O^{6+} + He collision and of the product N^{5+} ion in the N^{4+} + He collision are shown in Figs. 2(a) and 2(b), together with the energy profile of the primary ions. Figure 2 clearly demonstrates that the energy-spectral patterns of the product O^{5+} and N^{5+} ions are quite similar not only to each other but also to that of the C^{5+} ion in the C^{4+} + He collision reported previously and is shown in Fig. 2(c) as a reference. In Fig. 2 are indicated the calculated energy levels which correspond to some principal quantum numbers n of the product A^{3+} ions for the one-electron-capture process,

$$A^{4+} + \text{He} \rightarrow A^{5+}(n) + \text{He}^+ (1s).$$

As seen in Fig. 2, the electron is captured into neither the $n=2$ shell nor the $n=4$ shell. In each energy spectrum, only a single peak is observed at the energy gain of around 30 eV and it corresponds to the one-electron capture into the $n=3$ shell of the charge-state-changed projectiles of O^{5+} and N^{5+} as
ENERGY-SPECTROSCOPIC STUDIES OF ELECTRON-CAPTURE...

\[\text{N}^5+ + \text{He} \rightarrow \text{N}^4+(n\ell) + \text{He}^+(1\ell) \]

FIG. 4. (a) Typical energy spectrum of N\(^+\) ions in the forward direction from the N\(^+\) + He collision at 0.33 keV/amu. (b) Typical energy spectrum of C\(^+\) ions in the forward direction from the C\(^+\) + He collision at 0.38 keV/amu.

\[\text{O}^6+(1s^2) + \text{He}(1s^2) \rightarrow \text{O}^5+(1s^3l) + \text{He}^+(1s) + \mathcal{Q} \]

and

\[\text{N}^6+(1s) + \text{He}(1s^2) \rightarrow \text{N}^5+(1s^3l) + \text{He}^+(1s) + \mathcal{Q} \]

where \(\mathcal{Q} \) is distributed from 29.89 to 34.18 eV for the O\(^+\) + He collision and from 29.51 to 32.66 eV for the N\(^+\) + He collision. The energy resolution in the present experiment is not high enough to separate the sublevels of the \(n=3 \) shell.

In consideration of the polarization for the initial channel and the Coulomb repulsion for the final channel, the diabatic potential curves are presented in Fig. 3 for the collision systems of O\(^+\) + He and N\(^+\) + He, along with the system of O\(^5+\) + He. This figure illustrates good similarity among the potential curves of these collision systems and such similarity is considered to give the similarity in the energy spectra obtained for the one-electron-capture process by the O, N, and C ions having the same charge \(q=6 \) from He. The calculated reaction energies \(\mathcal{Q} \) and the crossing distances \(R_c \) in the related channels are listed in Table I.

![Typical energy spectra of N\(^+\) ions in the forward direction from the N\(^+\) + He collision at 0.33 keV/amu.](image)

FIG. 5. Diabatic potential curves for the one-electron-capture process, N\(^5+(1s^2\ell) + \text{He} \rightarrow \text{N}^4+(1s^3\ell) + \text{He}^+(1s)\), and energy diagrams for channels of one-electron capture into N\(^4+(1s^3\ell)\) and C\(^4+(1s\ell)\) levels.

The \(\mathcal{Q} \) values are distributed from 12.98 to 15.44 eV for the 1s3\(\ell \) states as listed in Table I. The observed peak re-
results from these states, though the preferentially capturing sublevels cannot be definitely assigned.

C. C$^{4+}$ + He collision

In the energy gain spectra of the charge-state-changed C$^{4+}$ ion in the forward direction from the C$^{4+}$ + He collision, two peaks are observed at around 12 and 31 eV as shown in Fig. 6(a). The former peak at 12 eV is considered to be due to collisions with background gases because it is still observed without the He target gas.

The latter peak at 31 eV increases with an increase of the target pressure of He gas and is originated from the charge-state-changed C$^{4+}$ ion in the one-electron-capture process by C$^{4+}$ from He. The energy spectrum of the product C$^{4+}$ ion reveals clearly that an electron is not captured into the C$^{4+}(1s^22s^22p^2)$ but into the C$^{4+}(1s^22p^3)$ level in the reaction such as

$$\text{C}^{4+}(1s^2) + \text{He}(1s^2) \rightarrow \text{C}^{4+}(1s^22p^3) + \text{He}^+ (1s)$$

(12)

In Fig. 7 are shown the diabatic potential curves for one- and two-electron-capture processes. The small value of the observed cross section of reaction (12) may be related to the very short crossing distance (1.57 Å). There are some potential curve crossings at around 2 Å for the two-electron-capture process. The C$^{4+}$ product peak is observed in the C$^{4+}$ + He collision as shown in Fig. 6(b) and it corresponds to the ground state of the C$^{2+}$ ion in the two-electron-capture process

$$\text{C}^{4+}(1s^22s) + \text{He}(1s^2) \rightarrow \text{C}^{2+}(1s^22s^21S) + \text{He}^+ + 33.37 \text{eV}.$$ (13)

The two-electron-capture process takes place more efficiently than the one-electron capture at the low-energy region as reported by Crandall. From the comparison between the peak heights of the C$^{4+}$ and C$^{2+}$ product ions we estimated that the total cross section of two-electron capture by C$^{4+}$ from He is about thirty times larger than that of one-electron capture at 0.31 keV/amu. This ratio agrees roughly with that calculated by Shipsey et al.

Finally, we add mention of the O$^{7+}$ + He and N$^{7+}$ + He collisions which have been reported in connection with the transfer ionization process. Patterns of the energy spectra obtained in both the collisions are very similar to each other (see Figs. 3 and 4 in Ref. 4) as expected from the similarity in the diabatic potential curves concerned. Dominant peaks in the energy spectra are observed at the energy gains of about 17—18 eV and they correspond to the one-electron capture into the $n=4$ shell of the product O$^{6+}$ and N$^{6+}$ ions. The reaction energies Q and the crossing distances R_c in the related channels are listed in Table I.

IV. CONCLUDING REMARKS

In this paper, we classified the experimental results according to the ionic charge state q rather than the isoelectronic sequence of the incident projectiles. There is good similarity among the energy spectra for ions having the same charge state q. This is quite natural because the diabatic potential curves are not very dependent on the num-

![FIG. 6.](image) (a) Typical energy spectrum of C$^{3+}$ ions in the forward direction from the C$^{4+}$ + He collision at 0.31 keV/amu. (b) Typical energy spectrum of C$^{3+}$ ions in the forward direction from the C$^{4+}$ + He collision at 0.31 keV/amu.

![FIG. 7.](image) Diabatic potential curves for the C$^{4+}$ + He collision and energy diagrams. Solid and dashed lines are for one- and two-electron-capture channels into C$^{4+}(1s^2nl)$ and C$^{4+}(1s^22l2l')$ levels, respectively.
It is clearly demonstrated that all the observed peaks in the energy spectra obtained in the forward direction are originated from the exothermic channels in the electron-capture processes without the excitation of the He$^+$ ion, and no signals due to the endothermic processes are found over noise levels in any energy spectra. In the one-electron—capture processes by fully stripped, hydrogenlike and heliumlike ions, O$^+$, N$^+$, and C$^+$, from the neutral He atom, it is confirmed experimentally that an electron is captured selectively into only a single shell of charge-state-changed projectiles. As summarized in Table II, the principal quantum numbers n of the capturing levels of charge-state-changed ions are determined as $n=4$ for O$^+$, O$^+$, and N$^+$ + He collisions, $n=3$ for O$^+$, N$^+$, C$^+$, N$^+$, and C$^+$ + He collisions, and $n=2$ for the C$^+$ + He collision.

It is interesting to compare these results with the prediction by the classical one-electron theory. The theory characterizes an internuclear distance R_e at which the attractive force by the multiply charged ion becomes to exceed the binding force for the electron in the target atom. In other words, the R_e gives the outer limit of the internuclear distance where the one-electron—transfer reaction is possible. The R_e is given by

$$R_e = \frac{Z_1^+ + 2(Z_2^+ Z_1^+)^{1/2}}{I_{He}},$$

(14)

where Z_1^+ and Z_2^+ are the effective charges of He$^+$-ion core and of q—charge-state core of the projectile, and I_{He} is the ionization energy of He atom in atomic units. The values of R_e given by Eq. (14) are listed in Table I. It is noted that most of the levels determined experimentally have the crossing distance R_c, which is smaller than the R_e, but is the largest inside the R_e. In some cases including O$^+$ and N$^+$, however, the R_c is slightly larger than the R_e. This discrepancy may be due to the crudeness of the classical theory and the inaccuracy of the potential curves. For other cases the classical theory correctly predicts the principal quantum number n of the level into which the electron is captured. The theory could be a criterion for prediction of the electron-capturing levels. It should be most interesting to see what relation exists between the cross sections and the R_e of the reaction channels determined. Unfortunately, the present data are not enough for a discussion of this subject and an effect to accumulate sufficient data for discussion of this subject is now under way.

Transfer ionization process producing a $(q-1)$—charge-state ion of the projectile via two-electron capture into autoionizing levels was observed in some cases; for example, the O$^+$ + He and N$^+$ + He collisions. The two-electron—capture process was found to be much more dominant than one-electron—capture process in the C$^+$ + He collision. In the cases of one- and two-electron—capture processes by C$^+$ not only the principal quantum number n but also the orbital quantum number l could be determined because the energy separation of the sublevels becomes larger in low-n shells.

ACKNOWLEDGMENTS

This work was carried out as a part of the Guest Research Program at the Institute of Plasma Physics, Nagoya University. The authors are grateful to Professor H. Kakihana, the Director of the Institute, and to Professor Emeritus K. Takayama, the former Director of the Institute, for their encouragement throughout this work. Thanks are also due to Professor T. Watanabe of the University of Tokyo for his interest and helpful discussion and to Mr. T. Hino for his technical skill and help.

![Table II. Principal quantum numbers n of selectively capturing levels of charge-state-changed projectiles $A^{q-1}+$ in the $A^{q}+$ + He collision.](image)

<table>
<thead>
<tr>
<th>q</th>
<th>n</th>
<th>q</th>
<th>n</th>
<th>q</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The classical model (Ref. 1) predicts $n=3$.

*Permanent address: Department of Physics, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan.
†Permanent address: Department of Liberal Arts, Kansai Medical University, Hirakata, Osaka 573, Japan.
‡Permanent address: Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan.
§Permanent address: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan.

8. The total cross section of one-electron capture in the C$^+$ + He collision was reported as 0.85×10^{-14} cm2 at 0.5 keV/amu in Ref. 1. However this value should be considered as an upper limit of the cross section because it could be affected by a small amount of the background gas.
As mentioned in Sec. III A, the R_e value is slightly different from the R value which is evaluated in Ref. 1. If the R_e is used instead of the R, the classical theory correctly predicts the experimentally determined principal quantum numbers n of the capturing levels with the sole exception in $N^{1+} + \text{He}$ collisions.
GAIN CHARACTERISTICS OF A MICROCHANNEL PLATE AND A CHANNEL-ELECTRON MULTIPLIER FOR LOW ENERGY MULTIPLY CHARGED IONS

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 15 November 1982 and in revised form 28 February 1983

Pulse height distributions are measured when multiply charged ions of S, Ne, F, O, N and C are incident on a microchannel plate (MCP) and a channel electron multiplier (CEM) in the velocity range of 3–4.5×10^5 m/s. The pulse height distribution obtained with the CEM shows no significant dependence of the gain on the energy, mass and charge state of incident ions. On the other hand, for the case of the MCP, an increase of the gain is observed with an increase of the charge state of incident ions irrespectively of ionic species. Such behavior is discussed in connection with secondary electron emission yield at the input and electron multiplication mechanisms in the channels.

1. Introduction

A channel-electron multiplier (CEM) has been used widely as a detector for electrons, ions and energetic photons. Because of its simple structure, small size and ruggedness, the CEM was first applied to space research. The detector also has inherent advantages such as high gain, and low background noise. Therefore, the CEM is now a common instrument for the detection of charged particles in atomic collision experiments as well as space experiments. In parallel with the development of the CEM, microchannel plates (MCPs) are commercially available [1]. Since the MCP is an array of 10^4–10^7 miniature channel-electron multipliers parallel to one another, it has good spatial resolution and rapid time response in addition to similar advantages as the CEM.

Both the detectors were operated in a pulse counting mode. In such a counting operation, the detection efficiency and the gain are the most important characteristics. The detection efficiency, which is defined as the number of output pulses per number of incident particles, has been investigated by many authors for charged particles and photons and a review of existing knowledge up to 1976 has been given by Macau et al. [2].

Recently, collision processes involving multiply charged ions have been of great importance in connection with thermonuclear fusion research. The characteristics of the CEM and MCP for multiply charged ions, however, has received little study to date. Fricke et al. reported the detection efficiency and gain characteristics of the CEM for multiply charged A^q+(q \leq 6) ions or rare gases in the incident energy range of 4–15 keV [3]. Meanwhile no investigation has been reported on the characteristics of the MCP.

In the present paper, we describe the gain characteristics of the MCP and CEM for multiply charged S, Ne, F, O, N and C ions at the incident energies from a few keV to a few tens of keV.

2. Experimental procedure

Fig. 1 shows a schematic of the experimental arrangement used in the present study. Multiply charged ions are produced by an electron beam ion source (EBIS), called NICE-1 [4]. Ions extracted from the source are accelerated to a desired energy and mass-analyzed by a 60° sector magnet. The ion beam is then collimated by a series of apertures, A_1 (1 mm in I.D.), A_2 (1 mm in I.D.), A_3 (0.5 mm in I.D.) and A_4 (1 mm in I.D.), and it then enters a parallel plate electrostatic analyzer. By applying an appropriate voltage to the analyzer, the ion beam was received with an MCP, while the ion beam was received directly with a CEM without...
the applied voltage. In order to avoid any acceleration and deceleration of the incident ions, the input of the CEM was grounded, and also the input of the MCP and the exit aperture plate of the analyzer were grounded.

The CEM used in the present experiment (MURATA EMS-1081) has a cone-shaped input of 10 mm aperture and a spiraled amplification section with 1 mm in I.D. and 100 mm in total length; the operation voltage was 3 kV. The MCP used is of tandem type (HAMA-MATSU TV F1158-11) having an effective aperture of 20 mm diameter. The diameter of each pore is 12 µm and the ratio of the length to the diameter is 45. The front and rear plates of MCPs have the same bias angle of 8° to the input surface normal and the plate separation is 0.03 mm. The operation voltage was 0.9 kV per plate. For the present experimental arrangement, the ion beam passing through the exit aperture (5 x 8 mm²) of the analyzer was incident on the MCP at an angle of 60° to the plate normal.

The MCP and CEM were operated in a single pulse counting mode. The charge output of these multipliers for each input event was read through a charge-sensitive preamplifier to a main amplifier–discriminator system. The discriminator threshold, however, was kept at zero throughout experiments. The output pulse was fed to a scaler and a multichannel analyzer. The gain characteristics of both the detectors were investigated by recording the output pulse height distribution (PHD) with the multichannel analyzer for a number of multiply charged S, Ne, F, O, N and C ions in the incident velocity range of 3-4.5 x 10⁵ m/s. The background pressure was maintained below 1 x 10⁻⁸ Torr throughout the present study.

3. Results

3.1. Pulse height distribution and the relative gain

In fig. 2 is shown a typical pulse height distribution (PHD) observed for the Ne⁹⁺ ion incident on the MCP; the incident velocity was 3.4 x 10⁵ m/s and the count rate was 1354 cps; the channel number illustrated in the figure is proportional to the output pulse height. The PHD observed contains pulses from thermal, background noises as well as true signal pulses. Signals below a valley, which appears at around 20 of relative pulse height in fig. 2, are mainly due to pulses of the background noise. In fact, a negative exponential shape was observed at a low pulse height side in the PHD when no ion was incident on the MCP. This fact enables one to discriminate easily and surely between true pulses and background noise pulses.

Except for the background noise, the main feature of the observed PHD was a quasi-Gaussian shape for all the ions studied, as expected from the space-charge saturation effect [5]. Such a quasi-Gaussian shape in the PHD was also observed with the CEM.

The gain is usually defined as the ratio of the number of output electrons to the number of incident particles. Due to statistical fluctuations of the secondary electron emission, the gain also varies statistically. When the PHD is a quasi-Gaussian shape as observed in the present case, it is convenient to define the average gain of the MCP to be the modal (most probable) number of output electrons per pulse. Therefore, we define the relative gain to be the pulse height value at the peak of the observed PHD (see fig. 2).

3.2. Gain characteristics of MCP

The measured relative gain of the MCP is illustrated in fig. 3 as a function of the count rate. In order to get a general feeling, the data for almost all the ions studied are shown in this figure. It is quite remarkable that the gain decreases when the count rate exceeds about 1000 cps. Such gain reduction may be due to the dense injection of the incident beam [6,7] (beam diameter ~ 1 mm/2500 pores). If the incident particles are injected widely over the surface of the MCP, that is, the current
density of the incident beam is decreased, a gain reduction does not occur when the count rate is in excess of 1000 cps. From this gain reduction, the recovery time is roughly estimated at about 250 ms, if a single burst of multiplied electrons from the front MCP is supposed to spread into about ten pores at the rear MCP. In the tandem MCP it is considered that the recovery time becomes longer than the estimation by Wiza [7] when many pores are used at the rear MCP for single ion input [8]. In the present work, detailed investigations were carried out under conditions of the count rate being less than 500 cps.

The relative gains measured for Ne$^{9-5+}$, F$^{7+}$, O$^{8-5+}$, N$^{5+}$ and C$^{4+}$ ions are shown in fig. 4 as a function of the incident velocity; each data point is an average of several measurements and the statistical error is estimated roughly to be ±6%. The measured pulse height distributions show no significant dependence of the relative gain on the incident velocity, though the present velocity range is rather narrow (3–4.5 × 10⁵ m/s). Then, the relative gains reasonably interpolated at a velocity of 3.5 × 10⁵ m/s are displayed in fig. 5 as a function of the ionic charge state q for all the A^{q+} ions observed. As seen in fig. 5, the relative gains increase with the charge state q and seem to line up on a straight line irrespectively of ionic species.

3.3. Gain characteristics of CEM

As mentioned in sect. 3.1, the pulse height distribution (PHD) obtained with the CEM was quite similar to that obtained with the MCP for all the ions investigated. In the space-charge saturation mode, the measured relative gain of the CEM as a function of the count rate is shown in fig. 6.
Fig. 7. The relative gain of the CEM as a function of the ionic charge. The gains are measured in the incident velocity range of $3\times 10^5 \text{ m/s}$.

PhD shows no significant dependence of the relative gain on the incident velocity. In fig. 6 is shown the relative gain as a function of the count rate for all the ions studied. Similarly to the case of the MCP, the relative gain decreases slowly with the count rate.

Then, by using the data obtained at a count rate less than 1500 cps, the relative gains are plotted as a function of the ionic charge state in fig. 7. Here the statistical error of each data point was approximately ±11%. In contrast to the case of the MCP, the relative gain is nearly independent of the ionic charge state for the CEM.

4. Discussion

The present result of the gain characteristics obtained with the CEM is in agreement with that reported by Fricke et al. [3]; the gain depression with the count rate and no significant dependence of the gain on ionic species, velocities or charge states.

According to the study of the electron multiplication mechanism of the CEM, the output pulse height distribution changes from a negative exponential to a quasi-Gaussian shape with increasing gain levels and such a peaked distribution is the result of space-charge saturation near the channel output [5]. Therefore, the modal gain is expected to be independent of the charge state, velocity and mass of incident ions, as far as the CEM is operated in the space-charge saturation mode. This is verified by the present and Fricke et al. experiments.

The next problem, then, is why the gain of the MCP does depend on the charge state, although its pulse height distribution is quasi-Gaussian. In order to remove ion feedback and to get stable operations at high gain levels, the MCP used was a chevron type which consists of front and rear plates. Secondary electrons emitted from each channel of the front plate fires several channels of the rear plate owing to the space charge effect. Wiza observed that the PHD from a MCP (not a chevron) is nearly a negative exponential [7]. His result suggests that the space charges do not saturate at the output of the front section, but the saturation is attained in the rear section. Therefore, even in a saturation mode as a whole, an increase of the space charge density is still possible at the output of the front section. This increase results in an increase in the number of the fired channels in the rear section and finally in an increase of the gain.

In a non-saturation mode as expected in the front section of the MCP, the space charge density should be closely related to the secondary electron emission yield by impact of ions. As is well known, the secondary electron ejection is explained by two mechanisms, potential ejection and kinetic ejection [9]. We observed no significant dependence of the gain on the impact velocity. This fact suggests that the contribution of potential ejection dominates that of kinetic ejection in the velocity range studied.

Now consider the dependence of the electron emission yield at the front surface on the charge state of the incident ion, based upon the potential ejection mechanism. The secondary electron is ejected by Auger neutralization or Auger deexcitation. As the multiply charged ion comes close to the surface, the Auger process is expected to occur several times at one impact. As a result, the secondary electron emission yield at the input surface of the front section may increase with the charge state of the incident ion, which in turn causes an increase of the gain with the charge state.

On the other hand, such an increase of the gain could not be expected for the CEM, because it consists of a single channel and its gain is limited by the space-charge saturation in one continuous channel.

5. Conclusion

Relative gain characteristics of a CEM and a MCP have been measured for various kinds of incident ions in the velocity range of $3\times 10^5 \text{ m/s}$. The relative gains for both detectors are independent of the impact velocities of the incident ions investigated here. As for the dependence on the charge state q of the incident ions, the relative gains of the CEM are almost similar for the various kinds of the incident ions, but those of the MCP increase with q. This q-dependence of the relative gain for the MCP is interpreted in connection with the q-dependence of secondary electron emission yield at the input and the electron multiplication mechanism in channels of the MCP.

The authors are grateful to Mr. Y. Kawasumi for helpful discussions and Mr. T. Hino for his technical support and assistance.
References

Measurement of Relative Population between $B^2+(2s)$ and $B^2+(2p)$ in Electron Capture Collision of B^3+ with He

Atsushi Matsumoto, Tsuruji Iwai,† Yozaburo Kaneko,† Masahiro Kimura,‡ Nobuo Kobayashi,† Shunsuke Ohtani, Kazuhiko Okuno,† Shoji Takagi, Hiroyuki Tawara and Seiji Tsurubuchi*

Institute of Plasma Physics, Nagoya University, Nagoya 464

(Received July 6, 1983)

One-electron capture processes into $B^2+(2s)$ and $B^2+(2p)$ have been investigated in B^3+-He collision at low velocities (1.3–2.3×10^7 cm/sec) using a translation energy spectroscopy. Energy dependence of the relative population between $B^2+(2s)$ and $B^2+(2p)$ is obtained and compared with the theoretical result of Shipsey \textit{et al.}

Recently collision spectroscopy has become a useful means, as well as optical spectroscopy, to obtain a better understanding of electron capture processes by multiply charged ions from neutral atoms. We report here a measurement of relative population between $B^2+(2s)$ and $B^2+(2p)$ states in electron capture collision of B^3+ with He at low collision energies using the technique of translation energy spectroscopy. Total cross sections for the one-electron capture by B^3+ ion from He atom have been measured by several authors.1–4 Their data are roughly in agreement with each other, and the measured cross section has a broad maximum at the collision energy of around 20 keV (see Fig. 1). Shipsey \textit{et al.}5 calculated the electron capture cross sections for the present collision system by means of a molecular state close-coupling method; their result is in agreement with the experimental data as seen in Fig. 1. They also evaluated the contribution of electron capture into the $B^2+(2s)$ and $B^2+(2p)$ states. Therefore, it is worthwhile to compare the present energy-spectroscopic data with the calculation of Shipsey \textit{et al.}

The apparatus used and the experimental procedure have been described previously.6–7 The energy spectra of the charge-changed

Fig. 1. Cross sections for one-electron capture by B^3+ from He. Closed circles-Zwally and Cable (ref. 1), open circles-Crandall (ref. 2), squares-Gardner \textit{et al.} (ref. 3), triangles-Iwai \textit{et al.} (ref. 4). Solid curve is the result for total cross section of Shipsey \textit{et al.} (ref. 5) and dashed curves are the partial cross sections for $B^2+(2s)$ and $B^2+(2p)$ states calculated by Shipsey \textit{et al.} (ref. 5). Arrows indicate the energy points at which the present observation is made.
boron ions were observed at the collision energies of 0.9–3 keV, and the observed spectra are shown in Fig. 2, together with the energy profile of the primary B$^3^+$. Two peaks are observed at the energy gain of 13.4 and 7.4 eV. By referring to the book of Bashkin and Stoner,8) the two peaks are found to correspond to the following reactions:

B$^3^+$(1s2) + He \rightarrow B$^2^+$(1s22s) + He$^+(1s)$ + 13.4 eV, \hspace{1cm} (A)

and

B$^3^+$(1s2) + He \rightarrow B$^2^+$(1s22p) + He$^+(1s)$ + 7.4 eV. \hspace{1cm} (B)

No other peaks are observed in the collision energy range studied. This fact indicates that the metastable B$^3^+(1s^2\text{ }1S)$ ion possibly contained in the primary ion beam does not contribute to these peaks. The present result reveals that an electron is captured selectively into the $n=2$ state, and this evidence is in accord with the prediction of the classical model discussed in the previous paper.4)

The relative peak intensity for the 2s and 2p states is quite sensitive to the collision energy as seen in Fig. 2. The relative intensity for the two states were determined from the best fit to the observed spectra by deconvolution with the energy profile of primary B$^3^+$ ions. The ratio $I(2s)/I(2p)$ obtained in this way is plotted as a function of the collision energy in Fig. 3, where the ratio of the respective cross section $\sigma(2s)/\sigma(2p)$ calculated by Shipsey et al. is also presented for comparison. The tendency that the ratio increases with an increase of the collision energy is seen in both the present experiment and the calculation. The measured ratio, however, increases more rapidly with the collision energy than the calculated result.

According to Shipsey et al., the B$^2^+(2s)$ state is populated via the radial coupling at the crossing distance $R_c \approx 4.7a_0$ (a_0: the Bohr radius), meanwhile the B$^2^+(2p)$ state is populated through two rotational couplings between the Σ states and the Π state; the rotational coupling at the inner crossing $R_c \approx 2a_0$ contributes at low energies and the coupling at the outer crossing $R_c \approx 7a_0$ does at high energies. As a result, the population in the 2p state exhibits a weak energy dependence. Since the R_c values responsible for the reactions (A) and (B) are fairly small at low energies studied in the present experiment, the product ions may not be always scattered into the extremely forward direction. There-
fore, a part of the discrepancy between the observation and the theory mentioned above may arise from the incomplete collection of the product ions.* Optical measurements of the energy dependence of light emission from B²⁺(2p) would be complementary to the present work.

To our knowledge, this is the first observation which shows strong energy dependence of one-electron capture into the same \(n \) but different \(l \) states for multiply charged ions by the translation energy spectroscopy.

References

* If the product B²⁺(2s) and B²⁺(2p) ions are completely collected, \(I(2s)/I(2p) \) is equal to \(\sigma(2s)/\sigma(2p) \).

Recent Activities at NICE Nagoya

S. Ohtani

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received September 7, 1982; accepted September 24, 1982

Abstract

A report is given of recent activities at NICE Nagoya in atomic collision research. The measurements of the total and partial cross-sections for one-electron capture in collision of highly stripped light ions with helium are presented.

1. Introduction

Charge transfer recombination of highly stripped ionic species in collisions with atomic hydrogen and helium is an important atomic process in (D-T) burning plasmas where it may influence the particle and energy balances by lowering the ionization states and by leading to production of high energy photons. A detailed understanding of these processes is surely needed for the development of the fusion research.

On the other hand, the knowledge of state-selected, partial cross-sections for electron capture serves for plasma diagnostics. The intensity enhancement of a particular line emitted from impurity ions during the injection of neutral hydrogen or helium beam gives us information on the spatial distribution of such ions in a hot plasma.

In the course of experimental investigation on atomic processes at Institute of Plasma Physics (IPP), Nagoya University, a research program was started at the end of the summer 1977, for studies of collisional processes involving highly stripped ions, as a joint research program by guest staffs and collaborators in the IPP. The group consists of 16 physicists:

T. Iwai (Kansai Medical Univ., Guest Prof. of IPP)
Y. Kaneko (Tokyo Metropolitan Univ., Guest Prof. of IPP)
M. Kimura (Osaka Univ.)
N. Kobayashi (Tokyo Metropolitan Univ.)
K. Okuno (Tokyo Metropolitan Univ.)
H. Tawara (Kyushu Univ.)
S. Tsurubuchi (Tokyo Univ. of Agriculture and Technology)
A. Matsumoto (IPP)
S. Takagi (IPP)
S. Ohtani (IPP)

The research program done by this group is called the NICE project. NICE means Naked Ion Collision Experiments.

In the present paper, we will report on some recent activities of NICE; the measurements of total and partial cross-sections for one-electron capture processes of highly stripped, light ions in collisions with helium atoms.

2. Ion source

The ion source we have constructed is of EBIS type [1]. In the early stage of the NICE project, we built a prototype EBIS having conventional solenoids of about 50 cm in length, and, using this proto-NICE, we accumulated various experiences on EBIS operation and got information on some characteristics of the ion source [2].

Based on these experiences, we have built a new ion source, called NICE-1, in 1979. A schematic view of NICE-1 is shown in Fig. 1. The NICE-1 has a superconducting magnet (SCM), which is 1 m in length and 10 cm in inside diameter. The magnetic field can be varied up to about 2 T. A surface of the liquid helium can of the magnet works as a cryogenic pump to reduce the background gas pressure in the ionization region. The background pressure measured at the outside of the vacuum vessel of the NICE-1 is usually around 1 x 10^{-10} torr and is expected to be less than this pressure in the ionization region inside the helium can. A very small amount of sample gas is continuously injected through the gap between the first and second drift tubes. A typical potential distribution applied to each element of the ion source for collision experiments is also shown in Fig. 1. All the potentials applied to the drift tubes (DT) are constant during the operation time. We call this operation a "continuous mode". Further details of the ion source are described in [3, 4].

![Fig. 1. Schematic view of NICE-1 and potential distribution applied to each element of the ion source.](image-url)
A typical charge state spectrum of 15N extracted from the NICE-1 at the acceleration voltage of 2.5 kV is shown in Fig. 2. As mentioned above, the NICE-1 is operated in a continuous mode, where sample gas atoms and the electron beam are continuously supplied and, also, ions produced in the ion source are extracted continuously. Therefore, the charge state of ions extracted is widely distributed from 1+ to 7+. Their distribution is strongly dependent on the gas pressure in the ion source and on the energy and current of the electron beam. The intensity of the fully stripped N$^{7+}$ ions is usually about 10,000 cps.

3. Collision experiments

3.1. Total cross-sections for one-electron capture

Using the ion source called NICE-1, we have recently measured cross-sections for one-electron capture by highly ionized atoms of B, C, N, O, F, Ne and S from He, at low energies [4, 5]. The measured cross-sections are nearly independent of the collision energies investigated with only a few exceptions. When the cross-sections at 0.8 keV amu$^{-1}$ are plotted as a function of the ionic charge q of isoelectronic projectile ions, strong oscillations in the cross-sections are observed for all ions (Fig. 3). This oscillatory behaviour is interpreted using the classical one-electron model [6] and the outline is as follows. In the one-electron capture processes at low energies, an electron is captured selectively into a level with a particular quantum number n. Such a level drastically changes from n to $n + 1$ with an increase of q. This level-change results in an increase of the crossing distance of the potential curves: it causes a significant increase in the q-dependence of the cross-sections. Similar oscillations in cross-sections have been reported in other collision systems [7–9].

In order to see whether the electron is really captured into a single level and whether the oscillation is caused by the change of such a level, we have measured translational energy spectra of charge-changing projectile ions scattered in the forward direction for the collision systems mentioned above [10]. These measurements give us information on the level into which the electron is transferred in the collision system.

3.2. Translational energy spectroscopy

The experimental set-up for the translational energy spectroscopy is shown in Fig. 4. The ion beam extracted from NICE-1 is focused, mass-analysed by a sector magnet (MS), and well collimated by a pair of apertures of 1 mm in front of the target gas cell. After passing through the gas cell, ions are decelerated by electrostatic lenses before entering a 127° cylindrical analyser. The mean radius of the analyser is $r = 125$ mm and the slit widths are $S_1 = 1.0$ mm and $S_2 = 1.5$ mm. The deceleration voltage V_R is so adjusted that the energy of the ions passing the analyser is between 30–60(×q) eV. The energy spectra of ions are obtained by scanning an additional, variable voltage superimposed upon the deceleration voltage V_R, while the deflection voltage V_D of the analyser is kept constant.

In Fig. 5 is shown a typical energy profile of O$^{6+}$ projectile ions extracted from NICE-1 at the continuous mode. The energy spread of the incident ions is usually 0.8 × q eV, depending a little on the current density of the electron beam and other parameters of the ion source. Further details of the experimental procedure for the translational energy spectroscopy are described elsewhere [11].

![Fig. 2. Typical spectrum of 15N$^{7+}$ ions extracted at $V_a = 2.5$ kV from the NICE-1 under the condition that electron beam intensity is 10.5 mA at the $V_c = 2.5$ kV and beam diameter is less than 0.5 mm.](image)

![Fig. 3. Measured cross-sections for one-electron capture at 0.8 keV amu$^{-1}$ as a function of the ionic charge q of projectile ions: B, C, N, O, F, Ne and S ions.](image)

![Fig. 4. Schematic view of the apparatus used for translational energy spectroscopy.](image)
In Fig. 6 is shown the energy spectrum of scattered C\(^{6+}\) ions from C\(^{6+}\) + He collisions. Calculated energy levels are also indicated, corresponding to some principal quantum numbers \(n\) of the product C\(^{6+}\) ions for the process: C\(^{6+}\) + He\((1s^2)\) → C\(^{5+}(n)\) + He\(^{(1s)}\). In this figure, only a single peak is observed which corresponds to the energy of the \(n = 3\) level in C\(^{5+}\), and this is in good agreement with the prediction of the classical consideration in [4].

For the case of O\(^{8+}\) + He collisions, as seen in Fig. 7, the electron is selectively captured into the \(n = 4\) level of the product ion O\(^{7+}\). This change of the level from \(n = 3\) to 4 should give rise to a significant difference in the cross-sections for one-electron capture by C\(^{6+}\) and O\(^{8+}\) ions. Actually, as seen in Fig. 3, the cross-section for O\(^{8+}\) is about three times as large as that for C\(^{6+}\).

An energy spectrum obtained in C\(^{5+}\) + He collision is shown in Fig. 8. It is clear that the electron is captured into the \(n = 3\) level of C\(^{5+}\). In this case, some population distribution among the sublevels in the \(n = 3\) level is observed. The population distribution [12] is more clearly seen in C\(^{6+}\) + He collisions, as is shown in Fig. 9. As for the principal quantum number, even in this case, the electron is captured only into the \(n = 2\) level of C\(^{6+}\).

Similar observations have been made for other fully stripped, H-like, He-like and Li-like ions of C, N and O incident on He, at collision energies of 1 \(\times\) q and 2 \(\times\) q keV. In all cases observed, it was clearly demonstrated that the electron is captured selectively into a single level with a particular quantum number \(n\) of the product ions [13], and that no signals due to endothermic processes and excitation of target He\(^{+}\) ions are found. In Table I is listed the level \(n\) into which the electron is captured for all ions investigated and the energy gain \(\Delta E\) measured in the energy spectra. As seen in Table I, it is found that, for the incident ions with the same charge state \(q\), the electron is captured into the same \(n\)-level, and the measured energy gains \(\Delta E\) are similar to each other. This similarity among the same \(q\) projectiles is due to the fact that the potential energy curves for A\(^{2q+}\) + He

![Fig. 5](image)

Fig. 5. Typical energy profile of O\(^{4+}\) projectile ions extracted from NICE-1.

![Fig. 6](image)

Fig. 6. Typical energy spectrum of scattered C\(^{6+}\) ions at forward direction from C\(^{6+}\) + He collisions at a collision energy of 6 keV. No peak was observed without target He gas (P\(_t\) ~ 0 torr).

![Fig. 7](image)

Fig. 7. Energy spectrum of product O\(^{7+}\) ions from O\(^{8+}\) + He collisions at a collision energy of 8 keV.

![Fig. 8](image)

Fig. 8. Energy spectrum of product C\(^{5+}\) ions at a collision energy of 5 keV.

C\(^{6+}(1s) + \text{He} \rightarrow C^{5+}(1s2l) + \text{He}^+*
collision systems are very similar for larger values of principal quantum numbers in the final state [14].

The results summarized in Table I are in rather good agreement with the prediction of the classical consideration. However, there are some discrepancies between the prediction and the measured data. For example, according to the classical treatment, the change of the level from \(n = 3 \) for \(\text{C}^2 \) to \(n = 4 \) for \(\text{N}^7 \) should cause a significant increase in the q-dependence in the cross-sections. But, in point of fact, as seen in Fig. 3, the measured cross-section for \(\text{N}^7 \) is very similar to that for \(\text{C}^2 \).

Accordingly, it is imaginable that there should be another rule in the determination of the q-dependence of cross-sections for one-electron capture, in addition to the selection and variation of the capturing level. In order to search for this additional rule, we arranged the measured total cross-sections \(\sigma_q \) as a function of the crossing distances \(R_c \) at which an electron is transferred in the potential energy curves (Fig. 10). As seen in Fig. 10, where \(R_c \) of each collision system is derived from the observed energy gain, the \(R_c \)-dependence in the cross-sections seems to have a peak structure. This fact implies that the electron capture process prefers states of the product ions which correspond to crossing points at some suitable internuclear distances. It is very interesting to find out the relation between the total or partial cross-sections and the crossing distances, but, unfortunately, the present data studied here are not enough to derive the selection rule for one-electron capture processes at low energies, such as the preference of certain crossing distances, and to discuss this subject. It is urgently needed that a sufficient amount of data is accumulated for the various collision systems.

Table I. Principal quantum number \(n \) and measured energy gain \(\Delta E \text{(eV)} \) for the collision systems:

\[
A^q + \text{He} \rightarrow A^{(q-1)} + \text{He}^* + \Delta E \text{(eV)}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>q = 3</th>
<th>q = 4</th>
<th>q = 5</th>
<th>q = 6</th>
<th>q = 7</th>
<th>q = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(n)</td>
<td>(\Delta E) (11)</td>
<td>(n)</td>
<td>(\Delta E) (24)</td>
<td>(n)</td>
<td>(\Delta E) (18)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

The author would like to thank Drs. M. Barat, C. L. Cocke, and D. H. Crandall for useful discussions at this Stockholm meeting. The author is also grateful to Professor H. Kakihana, the Director of the Institute, and to Emeritus Professor K. Takayama, the former Director of the Institute and to Professors J. Fujita, M. Otuka and H. Suzuki for their encouragement throughout this work. Thanks are also due to Professor T. Watanabe for his interest and helpful discussions and Mr. T. Hino for his technical skill and help.

References

1. A review of EBIS is given by E. D. Donets at this Symposium.
8. Cocke, S. L., Duboi, R. D., Gray, T. J. and Justiniano, E., IEEE
For \(N^* + He, O^* + He \) collision systems, aside from the dominant peaks corresponding to \(n = 4 \) levels of the product \(N^* \) and \(O^* \), weak peaks are observed. These peaks are assigned to be due to transfer ionization via two electron capture into the autoionizing states of \(N^* \) and \(O^* \). (Tsukubuchi, S., Iwai, T., Kaneko, Y., Kimura, M., Kobayashi, N., Matsumoto, A., Ohtani, S., Okuno, K., Takagi, S. and Tsurubuchi, S., Submitted to Phys. Rev. A.)

LETTER TO THE EDITOR

The dependence on R_c of cross sections for one-electron capture by S^{11+}, S^{13+} and Kr^{q+} ($q = 7-25$) ions from He atoms

T Iwai†, Y Kaneko‡, M Kimura§, N Kobayashi¶, A Matsumoto, S Ohtani, K Okuno¶, S Takagi, H Tawara and S Tsurubuchi||
Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 1 December 1983

Abstract. Total cross section measurements and translational energy spectroscopy have been performed at collision energies of 1 keV for one-electron capture processes by S^{11+}, S^{13+} and Kr^{q+} ($7 \leq q \leq 25$) ions from He atoms. When the measured cross sections are plotted as a function of the crossing radius R_c deduced from the observed energy gain, it is found that the cross sections in general increase with R_c and almost all of them lie between the $\frac{1}{2}\pi R_c^2$ and πR_c^2 curves. This dependence on R_c is very different from previous results for ions with relatively low q ($q < 10$).

We have systematically studied one-electron capture processes by highly stripped ions such as C^{q+}, N^{q+}, O^{q+}, F^{q+} and Ne^{q+} ions ($q \leq 9$) from He atoms at low collision energies. One of the important conclusions obtained from a series of our experiments (Kaneko et al 1982, Iwai et al 1982, Ohtani et al 1982, Tsurubuchi et al 1982, Kimura et al 1982, Okuno et al 1983, Tawara et al 1983) is that when the measured cross sections $\sigma_{q,a-1}$ are plotted as a function of the internuclear distance where electron transfer takes place predominantly, i.e., the crossing radius R_c of the diabatic potential curves deduced from the observed energy gain spectra, the cross sections do not follow the $\frac{1}{2}\pi R_c^2$ rule expected from the classical one-electron model, but seem to have a maximum around a particular crossing radius $R_c \approx 3.5 \AA$ (Tawara et al 1983).

A similar dependence of the cross section on R_c has been reported by several investigators for various collision systems and various collision energies (Winter et al 1977, Smith et al 1980, Huber 1983, Winter 1983), and it has often been called the reaction window. However, as pointed out by Tawara et al (1983), it is questionable to assert that this window is universal for all the collision systems.

Concerning the dependence on R_c, all the measurements reported so far are restricted to projectile ions having the charge of $q < 10$; no experimental work has been done for projectile ions of $q > 10$ at low energies. When the charge state q of...
the projectiles is increased, the corresponding R_c is expected to become large. Therefore, we extend a series of experiments to further high-q ions in order to see what happens in such cases of high-q ions. It will contribute to better understanding of the physics of the one-electron capture process by highly charged ions.

The present paper is a report on one-electron capture processes by S^{1+}, S^{13+} and Kr^{3+} ($q = 7-25$) ions from He atoms. Measurements of total cross sections and translational energy spectra of the fast product ions were carried out using the same apparatus as the previous experiments (Ohtani et al 1982, Okuno et al 1983) with little change. A movable MCP detector with a retardation grids system was inserted between the collision cell and the energy analyser for the total cross section measurements. The movable detector is similar to that reported by Mann et al (1982) and its details will be reported elsewhere. The cross section of the $O^{7+} + \text{He}$ collision measured in this system agreed well with the previous result by Iwai et al (1982). All the present measurements were performed at collision energies of 1q keV.

The measured cross sections $\sigma_{q,q-1}$ for Kr^{q+} ions are shown in figure 1 as a function of the charge state q of the projectile ions; in this figure, other experimental results obtained by Cocke et al (1981) and Kusakabe et al (1983) are also shown for comparison. Though the energy ranges studied are different in these papers, and though the range of q concerned is quite different, all the results can be connected smoothly with each other. We note in figure 1 that strong oscillation of the cross section with q is observed for low-q ions as was seen in our previous measurements (Kaneko et al 1982, Iwai et al 1982), and that for high-q ions the oscillation tends to diminish and the q dependence of $\sigma_{q,q-1}$ becomes very similar to that derived from an empirical formula of Müller and Salzborn (1977) which is shown as a broken curve in the figure.

![Figure 1](image.png)

Figure 1. Total cross sections for one-electron capture $\sigma_{q,q-1}$ as a function of the charge state q of projectile Kr^{q+} ions. ○: Cocke et al (1981) at 0.78q keV, ■: Kusakabe et al (1983) at 0.286 keV amu$^{-1}$, ●: present results at 1q keV.

Figure 2 illustrates typical examples of translational energy gain spectra of the product $Kr^{(q-1)+}$ ions. In all the cases studied here the energy spectrum has a strong peak with rather a narrow width, and in some cases the spectrum seems to have a weak peak in addition to the main peak. Unfortunately, we cannot assign the electron...
Letter to the Editor

Figure 2. Energy gain spectra of product Kr\(^{(q-1)+}\) ions at 1q keV for q = 12, 14, 15, 16 and 18.

capturing level corresponding to the observed peak because of lack of information on the energy level of the Kr\(^{(q-1)+}\) ion. However, as seen in figure 2, the quantity \(\Delta E/(q-1)\), where \(\Delta E\) is the observed energy gain at the main peak, becomes small with the increase of \(q\) in general. This means that the crossing radius \(R_c\) becomes large with the increase of \(q\). The \(R_c\) is obtained from the observed energy gain \(\Delta E\) through the equation: \(R_c(\text{Å}) = 14.4(q-1)/\Delta E(\text{eV})\), where only Coulomb repulsion is assumed for the diabatic potential.

In figure 3 we summarise all the measured cross sections \(\sigma_{q,q-1}\) as a function of \(R_c\) for \(S^{11+}\) and \(S^{13+}\) ions as well as Kr\(^{(q-1)+}\) ions, together with the result obtained previously (Tawara et al 1983). In contrast to the previous results for relatively low-\(q\) ions, the cross sections obtained here do not have any maximum around a particular crossing radius; almost all the present data points lie between the \(\frac{1}{2}\pi R_c^2\) and \(\pi R_c^2\) curves.

For high-\(q\) ions, an electron should be captured into the high Rydberg state of the product ion in which the \(l\) sublevels are nearly degenerate and around which the
neighbouring n states are closely located. Therefore, the electron capture reaction must be shared among a large number of levels within a narrow energy separation. In the present experiment, however, the energy resolution is not good enough to separate such closely located levels, and the ΔE and the R_c deduced from the peak position of the observed energy spectrum should be considered as some sort of average values. Besides, the measured cross section is the sum of contributions from those many reaction channels. This being the case, it is expected that the cross sections tend to πR_c^2 with the increase in the number of crossings as pointed out by Kaneko (1983). Olson and Salop proposed the absorbing-sphere model for these cases (1976).

In conclusion, the multi-level crossing is responsible for the R_c dependence of cross sections observed in the present work. Detailed discussion will be given in a full paper.

References

Huber B A 1983 *Phys. Scr.* T 3 96
Kaneko Y 1983 *Invited Talk at the Asia Pacific Physics Conference* (Singapore)
Okuno K, Tawara H, Iwai T, Kaneko Y, Kimura M, Kobayashi N, Matsumoto A, Ohtani S, Takagi S and
Tawara H, Iwai T, Kaneko Y, Kimura M, Kobayashi N, Matsumoto A, Ohtani S, Okuno K, Takagi S and
Winter H 1983 Phys. Scr. T 3 159
Energy-spectroscopic studies of electron-capture processes of low-energy, highly stripped F and Ne ions in collisions with He atoms

H. Tawara, T. Iwai,* Y. Kaneko,† M. Kimura,‡ N. Kobayashi,§ A. Matsumoto, S. Ohtani, K. Okuno,† S. Takagi, and S. Tsurubuchi†

Institute of Plasma Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

(Received 5 July 1983)

The electron-capture processes of highly stripped ions of F+ (*q = 6,7,8*) and Ne+ (*q = 7,8,9*) in collisions with He atom were investigated using the energy-gain spectroscopy technique. A single dominant peak is observed in most of the energy-gain spectra except for the Ne7+ and Ne9+ spectra, in which two peaks are observed corresponding to the one-electron capture process into levels with different principal quantum number \(n \).

I. INTRODUCTION

In our recent measurement of total cross sections for one-electron capture processes by highly stripped heavy ions from He atoms at low energies, it was found that the cross sections show significant oscillations when plotted as a function of the ionic charge of the projectile ions.\(^1\)\(^2\) This can be explained quantitatively by the classical one-electron model\(^2\) where it is assumed that in such a collision the electron is selectively captured into a particular single level of the ion. To confirm this assumption, we already made a series of measurements of the energy gain of various projectile ions such as \(\text{C}^{+} \) (\(q = 3-6 \)), \(\text{N}^{+} \) (\(q = 4-7 \)), and \(\text{O}^{+} \) (\(q = 5-8 \)) in collisions with He atoms using the transversal energy-spectroscopy technique.\(^3\)\(^4\) In fact, most of the energy-gain spectra observed show only a single peak which is found to be due to exothermic processes, indicating that the classical one-electron model is valid for these collisions at low energies. However, in some cases such as in the \(\text{C}^{+} \) + He collision, four peaks are observed.\(^5\) It was found that they correspond to electron capture into levels with the same principal quantum number \(n \) but different orbital angular quantum number \(l \). Similarly, the energy-gain spectra in \(\text{N}^{+} \) and \(\text{O}^{+} \) ions become broad indicating the contribution of a number of peaks corresponding to levels with different \(l \).

It has also been found that there is good similarity among the energy-gain spectral patterns obtained for different projectile ions with the same ionic charge \(q \), irrespective of the ion species: such similarity is considered to result from the similarity among the diabatic potential curves for \(\text{A}^{+} \) + He collision systems.\(^6\)

In the present paper, we present new results of our continuing investigation on the electron-capture processes of highly stripped F+ (\(q = 6,7,8 \)) and Ne+ (\(q = 7,8,9 \)) ions on He atoms. The present experimental principle and technique were already described in detail.\(^6\)

In the following, first, some features in the collision systems investigated are described. All the following experiments have been done at the energy of \(q \times 1 \) keV, where \(q \) is the ionic charge of the ion. The energy levels of each ion are taken from the book of Bashkin and Stoner.\(^7\)

II. EXPERIMENTAL RESULTS

(i) Ne7+ + He [see Fig. 1(a)]: Three peaks are clearly seen. The strongest peak at the energy gain \(\Delta E = 20 \) eV is found to be due to the following one-electron-capture process into the \(n = 4 \) level:

\[
\text{Ne}^{7+}(1s^22s) + \text{He} \rightarrow \text{Ne}^{6+}(1s^22s4l) + \text{He}^{+} + \Delta E. \tag{1}
\]

It is not possible to assign any particular single level because there are a number of closely spaced levels in \(\text{Ne}^{6+} \) ions.

The second peak at \(\Delta E = 38 \) eV is due to the following one-electron capture into the \(n = 3 \) state:

\[
\text{Ne}^{7+}(1s^22s) + \text{He} \rightarrow \text{Ne}^{6+}(1s^22p3f) + \text{He}^{+} + \Delta E. \tag{2}
\]

It should be noted that this process (2) involves two electrons; that is, one 2s electron in the projectile ion is excited into the \(2p \) state and the other is captured into the excited \(3f \) state of the projectile ion from the target atom. A similar two-electron process has also been observed in the \(\text{N}^{4+} + \text{He} \) collision which results in \(\text{N}^{3+}(1s^22p^2) \).\(^5\)\(^6\) This observation is the first clear evidence that the electron is captured into levels with different \(n \), in contrast to the classical one-electron model which assumes the involvement of only a single level in the one-electron-capture process at low energies.

The very weak peak at \(\Delta E = 68 \) eV is thought to be due to the transfer ionization, as discussed previously,\(^6\) as follows:

\[
\text{Ne}^{7+}(1s^22s) + \text{He} \rightarrow (\text{Ne}^{6+})^{*}(1s^22s3f) + \text{He}^{+} + \Delta E
\rightarrow \text{Ne}^{6+} + \text{He}^{2+} + e. \tag{3}
\]

though it is not possible to assure this because no information on the energy levels of such doubly excited states of many-electron systems is available presently. By comparing the integrated areas under peaks with total cross sections previously measured, it is estimated that the cross sections for processes (1), (2), and (3) are 26.1, 4.9, and 1.0 \times 10^{-16} \text{cm}^2, respectively.

(ii) Ne8+ + He [Fig. 1(b)]: The dominant peak at \(\Delta E = 31 \) eV is found to correspond to the following one-electron capture into the \(n = 4 \) state:

\[
\text{Ne}^{8+}(1s^2) + \text{He} \rightarrow \text{Ne}^{7+}(1s^24l) + \text{He}^{+} + \Delta E. \tag{4}
\]

The weak peak at \(\Delta E = 63 \) eV may be due to the transfer ionization

\[
\text{Ne}^{8+}(1s^2) + \text{He} \rightarrow (\text{Ne}^{6+})^{*}(1s^24l') + \text{He}^{2+} + \Delta E
\rightarrow \text{Ne}^{5+} + \text{He}^{2+} + e. \tag{5}
\]

1529 ©1984 The American Physical Society
The intensity for process (5) is roughly 10% of that for process (4).

(iii) Ne⁹⁺ + He [Fig. 1(c)]: At least two peaks are seen. The stronger peak at $\Delta E = 20$ eV is due to the following one-electron capture into the $n = 5$ state of Ne⁹⁺ ions:

$$\text{Ne}^9^+(1s) + \text{He} \rightarrow \text{Ne}^{10^+}(1s5d) + \text{He}^+ + \Delta E.$$ (6)

The second peak at $\Delta E = 44$ eV is due to the one-electron-capture process into the $n = 4$ state:

$$\text{Ne}^9^+(1s) + \text{He} \rightarrow \text{Ne}^{10^+}(1s4d) + \text{He}^+ + \Delta E.$$ (7)

The partial cross sections for processes (6) and (7) are roughly 14.5 and 5.5×10^{-16} cm², respectively. The very weak peak at $\Delta E = 70$ eV may be due to the transfer ionization as discussed previously.⁴

(iv) F⁷⁺ + He [Fig. 2(a)]: The observed peak at $\Delta E = 29$ eV is thought to correspond to the following simple one-electron capture:

$$\text{F}^7^+(1s^22s) + \text{He} \rightarrow \text{F}^8^+(1s^22s3l) + \text{He}^+ + \Delta E.$$ (8)

It should be noted that this peak is broader because of the contribution of the levels with different l, with the highest intensity for the $1s^22s3d$ 1D level. The weak shoulder at $\Delta E = 18$ eV is thought to be due to the following two-electron process, similar to process (2) in Ne⁹⁺ + He collisions:

$$\text{F}^7^+(1s^22s) + \text{He} \rightarrow \text{F}^8^+(1s^22p3l) + \text{He}^+ + \Delta E.$$ (9)

(v) F⁶⁺ + He [Fig. 2(b)]: The stronger peak at $\Delta E = 18$ eV is thought to correspond to the following simple one-electron capture:

$$\text{F}^6^+(1s^22s) + \text{He} \rightarrow \text{F}^7^+(1s^22p) + \text{He}^+ + \Delta E.$$ (10)

It should be noted that this peak is broader because of the contribution of the levels with different l, with the highest intensity for the $1s^22p$ 3D level. The weak shoulder at $\Delta E = 18$ eV is thought to be due to the following two-electron process, similar to process (2) in Ne⁹⁺ + He collisions:

$$\text{F}^6^+(1s^22s) + \text{He} \rightarrow \text{F}^7^+(1s^22p3l) + \text{He}^+ + \Delta E.$$ (11)
eV is due to the following process:

$$F^7+(1s^2) + \text{He} \rightarrow F^6+(1s^2 3p^4) + \text{He}^+ + \Delta E \ .$$

(10)

The weaker peak at $\Delta E = 66$ eV is probably due to the transfer ionization

$$F^7+(1s^2) + \text{He} \rightarrow (F^6+)^{**}(1s^2 3s 3l') + \text{He}^2++ + \Delta E$$

$$\rightarrow F^6++ + \text{He}^+ + e \ .$$

(11)

By comparing spectra in Figs. 1(a) and 2(b) with previous spectra for N^7+ and O^7+ ions,\(^6\) the observed spectra are found to be very similar for all the ions with $q = 7$ except for Ne$^{7+}$ where two different n levels contribute. This similarity of the spectra among different ions with the same ionic charge has been already discussed in detail.\(^6\) However, it should be noted that the transfer-ionization process is much stronger for F^7+ ions and its intensity amounts to about 20% of that for the main one-electron-capture process (10).

(vi) $F^3++\text{He}$ [Fig. 2(c): Only a single peak at $\Delta E = 28$ eV is observed which corresponds to the following one-electron capture into the $n = 4$ state of the F^7+ ion:

$$F^8+(1s^2) + \text{He} \rightarrow F^7+(1s^4) + \text{He}^+ + \Delta E \ .$$

(12)

As discussed above [see (v)], the very good similarity in the energy-gain spectra is observed in all ions with the ionic charge of $q = 8$ and is understood to be due to the similar energy-level diagrams among them.

III. DISCUSSION

Comparing the observed energy-gain spectra with the energy levels tabulated by Bashkin and Stoner,\(^7\) the principal quantum number n of the electron-capturing levels can be deduced for collision processes and are summarized in Table I which includes our previous data. Data for Ne$^{10++}$+He collisions are taken from the work of Mann et al.,\(^8\) where their collision energy was lower than ours.

As can be seen in Table I, the electron-capturing levels are the same for projectile ions with the same ionic charge, irrespective of the ion species. From the observed energy gain ΔE, the curve crossing radius R_c for the one-electron-capture process in the quasimolecule can be determined as shown in Table II through $R_c = 14.4(q - 1)\Delta E$ (q: the ionic charge of projectile ion; ΔE: eV; R_c: Å).\(^9\)

TABLE I. Principal quantum numbers n of the electron-capturing levels in $A^q++\text{He}$ collisions.

<table>
<thead>
<tr>
<th>q</th>
<th>n</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>54</td>
<td>5(4)8</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>4(3)8</td>
</tr>
<tr>
<td>O</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

aData of Mann et al. (Ref. 8).

bThe number in the parentheses is the principal quantum number n corresponding to the weak peak in the energy-gain spectrum.

TABLE II. Crossing radius R_c for the one-electron-capture process in $A^q++\text{He}$ collisions (Å).

<table>
<thead>
<tr>
<th>q</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>4.64</td>
<td>5.7</td>
<td>3.3</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3.6</td>
<td>4.8</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>3.4</td>
<td>4.8</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5.1</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aData of Mann et al. (Ref 8)

In Fig. 3 are shown total one-electron-capture cross sections for various ions investigated in our previous experiment as a function of the crossing radius R_c. For the split distribution of the capturing levels the cross sections are divided according to the observed peak intensity in the energy-gain spectra. In the figure, only data for stronger peaks are shown. The solid line is drawn through data points just to guide the eye, whereas the dotted and dashed curves represent the classical cross sections, that is, πR_c^2 and $\frac{1}{2} \pi R_c^2$, respectively. Classically, it is assumed that the electron capture effectively takes place at the outermost crossing distance R_c inside a critical distance R_c where the attractive force of the projectile ion exceeds the binding force for the electron ion target atom.

From Fig. 3, it is seen that the observed cross sections do not follow the classical cross section πR_c^2 rule. It should also be noted that they do not exceed πR_c^2 for all the range of R_c but are smaller than $\frac{1}{2} \pi R_c^2$ for $R_c < 2.5$ Å and decrease for $R_c > 4$ Å. The existence of a maximum in the cross sections at a particular crossing radius has been report-
ed by some investigators for various collision systems at different energy ranges and is often called the "reaction window." This window shape seems to be similar for the various cases reported and it tends to be believed to be "universal" for all the collision systems. It is, however, necessary to look at and analyze more carefully the observed data before coming to such a conclusion.

Only in the single crossing system can we theoretically analyze the data relatively easily. In such a single crossing, a Landau-Zener model calculation predicts that the dependence of the cross sections for the charge transfer on the crossing radius R_c is indeed similar in shape to the observed curve (solid line) shown in Fig. 3. It is noted, however, that the R_c dependence of the cross section is strongly dependent on the shape of diabatic potential curves at R_c as well as the collision velocity and, then, could not be universal. Furthermore, even though the observed energy-gain spectrum consists of a single peak, this does not always guarantee a single crossing in the diabatic energy diagram. In fact, we have no accurate idea of how many crossings do contribute to the observed "apparent" single peak in the energy-gain spectrum because of the limited energy resolution used in the experiments. For example, the sublevels having the same n but different l should result in many crossings closely located in the diabatic energy diagram.

On the other hand, if a number of crossings exist at larger crossing radii, many of them may contribute to the total charge-transfer process. Therefore the total cross section could increase with the number of crossings and finally reach the maximum cross section πR_c^2. If there are only a limited number of crossings available in the collision system under investigation, the cross section may not reach the maximum value, as in the present case.

Systematic studies of the l distribution of the electron-capturing levels of higher charge state ions would make it possible to discuss the R_c dependence of the cross section for electron capture in more detail.

As we have shown in Figs. 1 and 2, we observed weak peaks in the energy-gain spectra which we attribute to transfer ionization involving highly stripped ions. Unfortunately, at present there is no accurate data on the energy levels of such doubly excited states of heavy ions.

1Permanent address: Department of Liberal Arts, Kansai Medical University, Hirakata, Osaka 573, Japan.
2Permanent address: Department of Physics, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan.
3Permanent address: Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan.
4Permanent address: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan.
Landau-Zener Model Calculations of One-Electron Capture from He Atoms by Highly Stripped Ions at Low Energies

Masahiro Kimura,* Tsuruji Iwai,** Yozaburo Kaneko,**
Nobuo Kobayashi,*** Atsushi Matsumoto, Shunsuke Ohtani,
Kazuhiko Okuno,*** Shoji Takagi, Hiroyuki Tawara
and Seiji Tsurubuchi****

Institute of Plasma Physics, Nagoya University, Nagoya 464
(Received March 13, 1984)

Cross sections for single electron capture from He atom by highly stripped, C4+, N4+, O4+, F4+, Ne4+ (q = 4-9) and Kr4+ (q = 10-25) ions have been calculated using the multichannel Landau-Zener model. The collision energy is 600 eV/amu except for Kr4+, whose energy is q x 1 keV. The selective electron capture into a single or at most two n-shells is predicted for the cases of q ≥ 9. The n-distributions obtained by the present calculation are quite consistent with our earlier observation and the total cross sections agree reasonably well with the measured data in spite of the simple model. In the case of Kr4+, where q is larger than 10, more and more shells can be populated and the total cross sections increase monotonically with the increase of q.

§1. Introduction

Recently we have measured total cross sections for one-electron capture processes by highly stripped ions Aq+ (q ≤ 9) from He atoms at low energies;

\[A^{q+} + \text{He} \rightarrow A(q-1)^+ + \text{He}^+ + \Delta E, \]

(1.1)

where Aq+ is fully stripped ions of C, N and O, and H-like, He-like and Li-like ions of C, N, O, F and Ne.\(^1\)\(^-\)\(^2\) We have also measured the energy-gain \(\Delta E\) spectra from which the distributions over the final state quantum number \(n\) and, in some cases, the distributions over \(l\) were also determined.\(^3\)\(^-\)\(^7\) In almost all the cases except for Ne\(^7+\) and Ne\(^9+\) it was found that the electron is transferred into a particular single n-state and the capturing levels \(n\) are the same for projectiles with the same ionic charge irrespective of the ion species.

If we assume that the interaction of the system is only the pure Coulomb repulsion between the product ions, the crossing radius \(R_c\) of the potential curves between the initial and final states can be estimated through;

\[R_c(\text{Å}) = 14.4(q - 1)/\Delta E \quad (\Delta E \text{ in eV}). \]

(1.2)

When one-electron capture cross sections are plotted as a function of \(R_c\) there seems to be a maximum at around 3.5 Å.\(^7\) Similar results have been reported for various collision systems and the region with maximum cross sections is sometimes called “reaction window”.\(^8\) When higher charged ions, such as Kr\(^q+\) ions with 7 ≤ q ≤ 25, were employed as projectiles, the cross sections have shown no peak structure as a function of \(R_c\), but both the cross sections and crossing distances which give dominant contributions increase almost monotonically with \(q\).\(^9\) In general, several product channels can contribute to the reaction and the number of possible channels increases with the increase of \(q\). Accurate methods to calculate the cross sections, e.g., large basis molecular-orbital-close-coupling method, need enormous computation. When the number of channels is very large, a simple approximation called the
absorbing-sphere model was proposed by Olson and Salop to predict total cross sections. They assumed the unit probability for reaction inside some critical distance \(R_0 \) and that the charge-transfer cross section is simply given by \(Q = \pi R_0^2 \). Such an \(R_0 \) is determined through the condition that the probability \(p \) of electron remaining on the diabatic curve at the crossing \(R_0 \) becomes 0.86. This model is applicable only when the density of the curve crossings is high at internuclear distances in the vicinity of \(R_0 \). The number 0.86 was empirically deduced irrespective of the final state distribution.

In the present work we calculate both total and partial cross sections of one-electron capture processes using the multichannel Landau-Zener model and compare the results with our previous measurements.

§2. Survey of the Landau-Zener Model

2.1 Method of calculations

According to the Landau-Zener model, the probability of the diabatic transition at a single potential crossing is given by the following formula:

\[
p = \exp \left(-2\pi H_{12}^2 / v_b \Delta F \right),
\]

where \(v_b = v(1 - b^2 / R_c^2)^{1/2} \) is the radial velocity of projectiles at the crossing, \(v \) being the relative velocity, \(b \) the impact parameter, \(H_{12} \) the one half of the diabatic splitting at the crossing, \(\Delta F \) the difference in slopes of the curves, and \(R_c \) the radius of the curve crossings.

Analytical expressions of the coupling matrix elements \(H_{12} \) for one-electron capture processes by multicharged ions were proposed by several authors. Olson and Salop obtained an analytical fit to the coupling matrix elements for ionic charge \(q = 4 \) by calculating the potential curves for a large number of stripped-ion-atomic-hydrogen systems and extending to systems of the targets other than atomic hydrogen. The expression obtained by Butler and Dalgarno does not depend on \(q \), and is a factor of 4 smaller at \(q = 4 \) than that of Olson and Salop. Another expression was also obtained for \(q \leq 4 \) by Olson, Smith and Bauer. Their formula also gives values of \(H_{12} \) much smaller than those evaluated from Olson and Salop. After several trials, it is found that \(H_{12} \) is reduced by 40% from the matrix elements of Olson and Salop's \(H_{12} \), shows a good agreement with a series of our measurements. Therefore, we adopt the following expression throughout our present calculations:

\[
H_{12} = 5.48q^{-1/2} \exp \left(-1.324 \alpha q^{-1/2} R_c \right),
\]

where \(H_{12} \) and \(R_c \) are in a.u., \(\alpha = (2l_i)^{1/2} \) and \(l_i \) is the ionization potential of the target atom in a.u. When there is only one crossing, the total probability of the electron transfer at a given impact parameter is given by

\[
P = 2p(1 - p).
\]

This expression can be generalized to the case of multichannel crossings. The general expression of the probability \(P_i \) for a particular product ionic level \(i \) when there are \(N \) crossings is given by Salop and Olson assuming that there are no couplings between the adjacent exit channels as follows:

\[
P_i = p_i \sum_{j=0}^{N-1} \left(p_i p_{i+1} \cdots p_{i+j} \right) \Delta E_j.
\]

The partial cross section \(Q_i \) is obtained by integrating over the impact parameter and then the total cross section \(Q \) is obtained by summing up over \(Q_i \) as follows:

\[
Q_i = 2\pi \int P_i \, db,
\]

\[
Q = \sum Q_i.
\]

In the present Landau-Zener calculation we use the linear trajectory model and the crossing radius \(R_c \) for each product channel is estimated using eq. (1.2). The energy gain \(\Delta E_j \) of the reaction is determined by

\[
\Delta E_j = E_j(\Lambda^{(q-1)}) - I_{p}(\Lambda^{(q-1)} - I_{t}(\Lambda^{(q-1)})).
\]

where \(I_{p}(\Lambda^{(q-1)} - I_{t}(\Lambda^{(q-1)}) \) is the ionization potential of the charge-changed ion \(\Lambda^{(q-1)} \), \(E_j \) the excitation energy of the \(j \)-th level of the ion \(\Lambda^{(q-1)} \) and \(I_{p}(\Lambda^{(q-1)}) \) the ionization potential of He atom. The values of \(I_{p} \) and \(E_j \) are taken from the
2.2 General characteristics of the Landau-Zener cross section for a single crossing

Before going into the detailed calculation, we consider the general characteristics inherent in the present Landau-Zener model for the simple case of a single crossing.

As seen in eq. (2.2), the coupling matrix element H_{12} is dependent on q as well as on R_c. In order to see the features of the cross sections calculated by using Landau-Zener formula eq. (2.1) for a single crossing with H_{12} given by eq. (2.2), some examples are shown in Fig. 1. In Fig. 1(a) are shown the cross sections for various projectile charges q at a fixed collision energy of 600 eV/amu. In Fig. 1(b) are shown the cross sections for $q=8$ at different energies. The R_c-dependence of cross sections has more or less similar shape of curve, e.g., there is an optimum region of R_c for the cross section have to an appreciable magnitude. The reason is that when R_c is too small H_{12} is so large that p is very small and then P is small, whereas when the R_c is too large H_{12} is so small that p is close to unity and then P is again small. In the region where $p\sim 0.5$, P has a maximum. These features are common for all cases and, therefore, such a shape of the R_c-dependence is often called “reaction window”. It is noted from the present analysis, however, that such a reaction window has a definite meaning for collision systems with the same q and the same collision velocity.

For low-q ions, the cross section has rather a narrow peak; this means that the cross section is large only when the crossing radius in an actual collision system happens to fall into such a narrow region of R_c. Because of the narrow R_c region, and also because of large separation of the adjacent n-states, the electron is transferred selectively into a particular single n-state whose crossing is located on the reaction window. On the other hand, for high-q ions, the shape becomes wide, and also the maximum of the cross section increases. This fact suggests that several n-states can be populated and the total cross section increases with q.

2.3 The Landau-Zener model for multi-curve crossings

Roughly speaking, the above-mentioned model for a single crossing explains qualitatively the results obtained from a series of our experiments. Actually, however, there are many crossings between the diabatic potential curves of the initial and final states. The next

Fig. 1. The calculated single-crossing Landau-Zener cross sections for one-electron capture by multicharged ions A^{q+} from He as a function of the crossing distance R_c of potential curves. (a) The collision energy is fixed at 600 eV/amu and q is varied from 4 to 22. (b) Projectile charge q is fixed at 8 and the collision energy is varied from 50 to 3200 eV/amu.
step is to extend the single crossing model to the multi-curve crossings and to see how the model does work.

Three typical examples of actual collision systems are shown in Fig. 2(a), (b) and (c).

(a) $^{16}O^{6+} + \text{He}$ collision system (Fig. 2(a))

The dominant one-electron capture process has three final channels leading to the $1s^23s$, $1s^23p$ and $1s^23d$ states of product O^{5+} ion. The crossing radii corresponding to these $n=3$ states are, respectively, 2.10, 2.33 and 2.41 Å, all of which are fairly smaller than the optimum radius (3.2 Å) shown in Fig. 1(a). The coupling matrix elements for $1s^23l$ states are so large that the diabatic transition probabilities p are very small. In that case, eq. (2.4) tells us that the two transitions at inner crossings are suppressed by the transition at the outer-most crossing, which has a dominant influence on total cross section. Other crossings corresponding to the $1s^24l$ and $1s^22l$ states are located outside the reaction window and their contributions are negligibly small.

(b) $N^7^{++} + \text{He}$ collision system (Fig. 2(b))

The dominant process is the electron transfer into the $1s4l$ ($l = s, p, d$ and f) states of product N^6^{++} ion, and the corresponding crossings are located at fairly large distances $r \geq 5$ Å in contrast to the case (a) above. As the coupling matrix element H_{12} between the initial and final states is very weak for such large R, the radial velocity v_b should be small at the crossing (see eq. (2.1)) to give a favorable value of p. Therefore, the transition at larger impact parameter is more favored. Since p is close to unity except for the glancing collision, it can be seen from eq. (2.4) that the inner crossings contribute to the reaction without being influenced strongly by the outer crossings. This fact leads us to the conclusions that each channel contributes to the total cross section almost independently of other channels and that the total cross section is nearly proportional to the number of the crossings.

(c) $\text{Ne}^{9+} + \text{He}$ collision system (Fig. 2(c))

This is a case of a wide reaction window (see Fig. 1(a)). Two groups of the crossings corresponding to the $n=4$ states and $n=5$ states of product Ne^8^{++} ion fall into the reaction window. As seen in Fig. 2(c), the transition to the $n=4$ states is similar to the case (a) and the outer transition to the $n=5$ states is similar to the case (b). Both transitions contribute to the electron transfer reaction. Indeed, the corresponding double peak structure was observed in our energy-gain spectrum. It is clear that the inner transitions ($n=4$) are not affected significantly by the outer transitions ($n=5$). This fact can be understood in a similar way to the case (b). Contributions from other channels leading to the $n=3$ and $n=6$ states are negligibly small, because their crossing radii are too small or too large.

It should be noted that these three cases provide us very good examples for understanding the properties of charge transfer process from the point of view of the potential crossing radius R_c. In the following sections, we calculate individual cross sections and compare them with the experimental results.

Fig. 2. Probabilities P_l of one-electron capture into various projectile levels (n, l) as a function of the impact parameter b at a collision energy of 600 eV/amu. (a) $O^{6+} + \text{He}$, (b) $N^7^{++} + \text{He}$ and (c) $\text{Ne}^{9+} + \text{He}$.

1984) One-Electron Capture by Highly Charged Ions 2227
§3. Landau-Zener Cross Sections for Highly Stripped C, N, O, F and Ne Projectile Ions

As mentioned above, eq. (2.2), a revised form of the Olson-Salop’s expression, is adopted as the coupling matrix element H_{12} and the excitation energies of product ions are referred to the book of Bashkin and Stoner. Some excitation levels such as $O^{6+}(1s4s)$, $F^{6+}(1s24f)$, $Ne^{7+}(1s24f)$ and $Ne^{8+}(1s5s, 1s5g$ and $1s4s)$ are not listed up in the book; these excitation energies are determined by extrapolation from the known sublevels.

Calculations of the cross sections have been carried out for almost all of the fully-stripped, H-like and He-like projectile ions of C, N, O, F and Ne. We did not calculate cross sections for two cases of F^{6+} and Ne^{7+} projectiles, because the dominant electron transfer is not one-electron process, but two-electron process leading to doubly excited states $2p3l$ of product F^{5+} and Ne^{6+} ions. In the case of A^7+ projectiles ($A= N, O$ and F), we observed transfer ionization process where two electrons are captured into autoionizing levels of product A^{5+} ions. We neglect this process in the present calculation, because of its minor contribution to the electron transfer process.

In Table I are listed the calculated cross sections and the capturing levels n at the collision energy of 600 eV/amu together with the experimental data. Contributions from the levels which are not listed in the table are found to be negligibly small. The most important capturing levels deduced from the present model are quite consistent with our experiments. The agreement of the cross sections is almost satisfactory except for C^{4+}, C^{6+}, N^{6+} and O^{6+}, all of which have the crossing distances smaller than 2.5 Å. In such small distances our simple assumptions on the potential curves are invalid and the coupling matrix element H_{12} becomes inaccurate. The calculated partial cross sections for the two n-states in $Ne^{9+}+He$ collision are also in reasonable agreement with the experiment.

In Fig. 3 are compared the calculated total

Table I. One-electron capture cross sections for $A^{n+}+He$ collisions calculated using the multi-channel Landau-Zener model (MLZ) are compared with the experimental data (Exp) of refs. 1 and 7. The capturing levels n are also listed. In parentheses are partial cross sections. The collision energy is 600 eV/amu. It should be noted that all the collision energies where experimental data are taken are not exactly the same, but vary from 430 to 780 eV/amu.

<table>
<thead>
<tr>
<th>A</th>
<th>q</th>
<th>n</th>
<th>Cross sections (\AA^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MLZ</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>3</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>6</td>
<td>3</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>10.3</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>8</td>
<td>4</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>(10.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(6.6)</td>
</tr>
</tbody>
</table>

Fig. 3. The total one-electron capture cross sections versus the crossing radius R_c in $A^{n+}+He$ collisions calculated using multichannel Landau-Zener model (black symbols) are compared with the experimental data in ref. 7 (open symbols). Projectiles charge q is written beside the symbols. The collision energy is around 600 eV/amu.
one-electron capture cross sections with the data measured for various projectile ions as a function of the crossing radius R_c. For the cases where several peaks were observed, the measured cross sections are shared among the respective states according to the observed peak intensities in the energy-gain spectra; Only data for stronger peaks are shown in the figure. When several sublevels were not resolved in the observed spectra, R_c is estimated from the peak position or from the weighted average of ΔE which contribute to the peak. An observed maximum in the cross section at R_c around 3.5 Å is reproduced fairly well with the present model.

§4. Landau-Zener Cross Sections for Highly Stripped Kr$^{q^+}$ Projectile Ions ($q = 10, 15, 20$ and 25)

In the case of Kr$^{q^+}$ ions the accurate levels of Kr$^{(q-1)^+}$ are unknown. We assume then that Kr$^{(q-1)^+}$ ions have the H-like energy levels. This seems to be a reasonably good assumption for large q where an electron is captured predominantly into high Rydberg states. We further assume that each n-state has n sublevels corresponding to possible l.

In Fig. 4 are shown the calculated partial (P_i) and total (P) transition probabilities for the possible channels as a function of the

![Fig. 4](image-url)

Fig. 4. The calculated probabilities P_i of one-electron capture into various states i of Kr$^{(q-1)^+}$ for Kr$^{q^+}$ + He collision system as a function of the impact parameter b. The collision energy is $q \times 1$ keV. Total probabilities P are shown by the broken lines and its scale is shown on the right-hand ordinate. Crossing points between the product A$^{(n+1)^+}$ + He$^+$ system and the initial system are shown by the vertical arrows. The dotted arrows indicate the absorbing-sphere radii R_o proposed by Olson and Salep (ref. 10). Projectile charges q are (a) 10, (b) 15, (c) 20 and (d) 25.
impact parameter at the collision energy of \(q \times 1 \text{ keV} \). As seen in Fig. 4, the most interesting features in these cases are that the number of the states contributing to the charge transfer processes increases with increasing \(q \) and that the collisions at large impact parameters have appreciably high reaction probabilities. These are due to the increased width of the reaction window with increasing \(q \) (Fig. 1(a)) and also due to the small energy separation between the adjacent levels of the product \(\text{Kr}^{(q-1)^+} \) ions. When only a limited number of the states with large crossing radius are available as in the cases of \(\text{N}^{7+} \) and \(\text{O}^{7+} + \text{He} \) (Fig. 2(b)), only the near-grazing incidence to the crossing sphere can lead to the charge transfer reaction with considerable probabilities. This fact makes the total cross section relatively small in spite of large \(R_c \). Contrary to those cases, it is shown when \(q \geq 15 \) that all collisions at the impact parameters smaller than a certain radius have appreciable probabilities of the reactions, i.e., not only the crossings located at large distances inside this sphere but also the crossings at smaller distances participate in the reactions. Especially for ions of \(q \geq 20 \), the collisions with the impact parameters smaller than a certain distance make the charge transfer probability nearly constant. In fact, the probabilities are generally larger than 80%, which may be compared with the absorbing-sphere model proposed by Olsson and Salop.\(^{10,16} \)

They defined the radius \(R_0 \) from the condition that the diabatic transition probability \(p(b=0) \) becomes 0.86 at \(R_0 \) and assumed that the probabilities inside this sphere are unity. The radius of the absorbing sphere was calculated by using eq. (2.2) and indicated in the figures by the dotted arrows.

Partial cross sections are shown in Fig. 5, while total cross sections are shown in Fig. 6 with other experimental data and an empirical scaling law proposed by Müller and Salzborn.\(^{15,19} \) No experimental data on partial cross sections are available. Since the separation of the energy-gain peaks corresponding to different \(n \)-states for these systems becomes so small in our energy-gain spectra, even the \(n \)-distributions could not be determined experimentally.\(^{9} \) Therefore, the effective crossing distance \(R_c \) was deduced from the observed

![Fig. 5. Calculated distributions of one-electron capture cross sections over the principal quantum number \(n \) for \(\text{Kr}^{q+} \) (\(q = 10, 15, 20 \) and 25) + He collisions. The collision energy is \(q \times 1 \text{ keV} \).](image)

![Fig. 6. Total cross sections for one-electron capture \(\sigma_{\text{tot}} \) as a function of the charge state \(q \) of projectile \(\text{Kr}^{q+} \) ions. •: Cocke \textit{et al.} (ref. 16) at \(q \times 0.78 \text{ keV} \), ■: Kusakabe \textit{et al.} (ref. 17) at 0.286 keV/amu, ○: Iwai \textit{et al.} (ref. 9) at \(q \times 1 \text{ keV} \), ×: the present calculated results at \(q \times 1 \text{ keV} \). The dashed curve represents the empirical scaling law of Müller and Salzborn (ref. 15).](image)

peak position of the energy-gain spectra using eq. (1.2). On the other hand, the theoretical effective \(R_c \) was evaluated from the weighted
average of the calculated energy gain ΔE. The results are compared in Fig. 7. It is clearly seen that both the calculated cross sections and effective crossing distances increase with q in agreement with the observed results and that both cross sections are between $1/2\pi R_c^2$ and πR_c^2. Though more and more channels belong to higher n-states, our calculations are based on the assumption that there are no couplings between the adjacent channels. This assumption may somewhat overestimate the cross sections especially for the charge states q larger than 20.

The present calculation is based upon several assumptions and simplifications. We assumed, as the coupling matrix element H_{12}, an Olson-Salop's expression multiplied by a factor of 0.6 (eq. (2.2)). We neglected the interference between the neighboring channels. For high-q ions where no levels are known, the number of the channels was assumed to be proportional to the principal quantum number n. The Landau-Zener probability p (eq. (2.1)) becomes inaccurate in near-glancing collisions. No correction, however, was made for this case. We also neglected the orbiting effect in the present calculation. In spite of these assumptions and simplifications, the agreement between the present calculations and experiments is systematically good. Therefore, the present model helps us to get an insight of physics of one-electron capture processes by highly stripped ions from He atoms.

Acknowledgements

This work was carried out as a part of the Guest Research Program at the Institute of Plasma Physics, Nagoya University. The authors are grateful to Professor H. Kakihana, the Director of the Institute, and Professor Emeritus K. Takayama, the former Director of the Institute, for their encouragement throughout the present work. Thanks are also due to Professor T. Watanabe of the Institute of Chemical and Physical Research (RIKEN) for his interest and helpful discussion.

References

One-electron capture processes in collisions between highly stripped ions and He atoms at low energies are discussed. For lower charged ion collisions, the cross sections oscillate strongly with increase of charge state, while for higher charged ion the cross sections tend to increase monotonically. Through a series of experimental investigation of the final states of collision products, it reveals that the cross sections are sensitive to the details of the potential curves of the collision systems.

INTRODUCTION

During the last decade, a great deal of information on electron capture processes in slow collisions between highly stripped ions and atoms has been accumulated. At XI ICPEAC in Kyoto and XII ICPEAC in Gatlinburg, we had symposia of collisional processes involving highly stripped ions and there both theoretical and experimental situation of electron capture collisions was reviewed [1,2]. There are a number of excellent review articles and proceedings of the symposia which have been devoted to the collision processes involving highly stripped ions: see, for example, Gilbody [3], Dalgarno [4], Janev and Presnyakov [5], de Heer [6, 7], the IAEA Technical Committee Meeting on Atomic and Molecular Data for Fusion [8], the Symposium on Production and Physics of Highly Charged Ions in Stockholm [9], and the NATO Summer School of Atomic Physics of Highly Ionized Atoms at Cargese [10].

As for the electron capture processes by highly stripped ions from multielectron targets, Salzborn and Müller [11] reviewed at the XI ICPEAC in Kyoto in 1979. There they discussed the general feature of cross sections dependent on the velocity and the charge state of projectile in slow collisions ($v < 1$ a.u.). In this paper we shall follow the scheme of their review but cannot cover all the new data of interest in connection with the fast increasing interest of this field. Therefore, we will focus on a part of this field and discuss the progress in the recent experimental studies of final-state-selected one-electron capture by highly stripped, slow ions from He atoms as the most simple multielectron targets as follows,

$$A^{q^+} + \text{He} \rightarrow A^{(q-1)^+}(n1) + \text{He}^+. $$

These collisions may take place very effectively in reactions of moderate exothermicity through the favored crossings in the diabatic potential curves. Final-state-selective studies are essential for unambiguous interpretation of the electron capture processes.

ION SOURCES

As one of the reasons of a rapid growth in this field, we would like to mention successful progress in the development of "new generation" (named by Crandall [12]) ion sources for slow ions.
Recoil ions, formed when fast heavy projectiles extracted from an accelerator impact gas atoms (e.g. Xe$^{29+}$ at 4.5 MeV/amu on Ne gas target), are very slow and highly stripped. These slow ions ($2 - 20 \text{ eV}$) extracted from the target cell can be used for collision experiments. Such experiments are being performed by Cocke et al. [13], Mønø et al. [14], Kusakabe et al. [15], Aarhus group [16] and by some other groups. The property of providing localized, suddenly-charged in a short time, slow ions is uniquely suited to ion trap experiments of very slow collisions such as done by Sellin et al. [17] and Prior et al. [18]. The most powerful sources are considered to be an electron cyclotron resonance ion source (ECRIS)[19] and an electron beam ion source (EBIS)[20] for collision experiments in the low energy keV region. There are a number of new experiments using these ion sources. The present situation of these "new generation" ions sources and other important ones are summarized by Crandall [12], and the recent progress of the ion sources is reviewed by H. Winter [21].

TOTAL CROSS SECTIONS FOR ONE-ELECTRON CAPTURE

During the last years, systematic investigation of charge transfer collisions has been performed by Salzborn et al. [11] and subsequently done by Huber et al. [22] and Bliman et al. [23]. According to their measurements, the general feature of the total cross sections for one-electron capture q_0q_{-1} in the various collision systems with the same target atoms at low energies are as follows:

1) The cross sections are almost independent of impact energy, excepting low q projectile systems.

2) The cross sections generally increase with the primary ion charge state q. As an example, Fig. 1 shows total cross sections q_0q_{-1} in collisions of Bi$^{9+}$ ions with He atoms as a function of the collision energy, measured by Schrey and Huber [24] using a miniature EBIS of Redhead type. In this figure, the cross sections for Bi$^{7+}$ are very small and show a marked energy dependence in comparison with other q_0q_{-1} in the energy range studied.

Among a large number of one-electron capture cross sections investigated, such a behavior always occurs with high atomic number projectile with low charge states and He target systems. This behavior is considered to be due to the fact that, in these collision systems, the energy defect of the reaction is very small or negative (endothermic) in almost cases.

For higher q collision systems, the cross sections q_0q_{-1} show the weak energy dependence. This behavior is understood by the involvement of a lot of electron-capturing excited states of the product ion. The partial cross section for each specific transition of an electron terminating in a final state may have an individual energy dependence. The total cross section, however, should be made up by a sum over the involved partial cross sections with maxima at different collision energies and hence shows a faded energy dependence. Further, for highly but partially stripped ion collisions, the number of these states increases more and more with increasing q. The number of open channels in the reaction becomes so large that the electron capture process can be considered as decay of the initial input-channel, and then, due to its interaction with the quasicontinuum of final states, this process becomes quasistationary in character. Under these conditions, a scaling law of the cross section with q becomes possible since the decay concept remains valid in a wide q region.

In the above circumstances, many attempts have been made to find a general expression for the charge state q dependence of the one-electron capture cross section by scaling in terms of power laws. According to the scaling laws derived from systematic investigation of measured cross sections, the cross sections obey roughly a scaling of linear dependence of q: $q^{1.1}$ by Müller and Salzborn [25], $q^{1.0}$ by Huber and Kahlert [26] and $q^{1.0}$ by Bliman et al [33]. The theoretical consideration of the scaling laws was discussed by Janev and Hvelplund [28]. They showed the reduced representation of the cross sections in a wide region of the collision energy based on the theoretical consideration. In Fig. 2, are shown the experimental reduced cross sections as a function of the reduced energy for the cross sections for one-
Fig. 1. Cross sections for one-electron capture $\sigma_{q,q-1}$ by Bi$^{q+}$ ions incident on He. From Ref. [22].

Fig. 2. Reduced cross sections for electron capture σ/q vs. reduced energy E/\sqrt{q}. Solid lines are fits to the experimental data ($q \geq 5$). References to the original data can be found in Ref.[27]. From Ref.[28].
electron capture by highly stripped ions (q≥5) from H and He targets together with their fitted curve. In low energy region, linear dependence of q is also seen. They also mentioned that the decay process of the initial channel plays an important role to discuss the scaling law for the collision systems involving many electrons at low energies and investigation of electron transfer in a quasimolecular system at the various crossings is necessary for further understandings. Meanwhile, in order to understand a detailed mechanism in the electron capture processes between highly stripped ions and multielectron atoms at low energies, the collision system between a highly stripped, simple ion having no more than a few electrons and He atom may be suitable because its electronic structure is simple enough to treat theoretically. As a typical example, hereafter, we would like to show the experimental work recently done by NICE group [29 - 37] in order to investigate the electron capture processes by highly stripped ions from He atoms. NICE group was organized by Kaneko and Iwai at Nagoya 1977 [34]. NICE means Naked Ion Collision Experiment.

We have measured cross sections for one-electron transfer from a He atom into fully-stripped, hydrogen-like, helium-like and lithium-like ions of B^{9+}, C^{9+}, N^{9+}, O^{9+}, F^{9+} and Ne^{9+} at collision energies below 1.5 keV/amu. In Fig. 3, the total cross sections for one-electron capture at 0.8 keV/amu are shown, including highly stripped S^{9+} collisions. The lines are drawn to connect data for ions having the same iso-electronic sequences. The cross sections q, q-1 oscillate strongly with q, around a dotted line which shows an empirical q-dependence q^{1.17} [25]. Similar oscillations of q, q-1 in the q-dependence have been observed by many investigators for the more complicated collision systems. This oscillatory behavior is interpreted in terms of the classical one-electron model [38], which becomes familiar at present.

According to the classical model, in the one-electron capture processes at low energies, an electron is captured into a selective level with a principal quantum number n. Such a level drastically changes from n to n + 1 at a particular value of q when the q is increased. This level-change results in an increase of the crossing distance of diabatic potential curves: it causes a significant increase in the q-dependence of the cross sections. When the quantum number n is the same, the larger q gives the smaller interaction distance, causing gradual decrease in the cross section. After all, the q-dependent cross sections show a saw-tooth type oscillation. Though the classical model may be crude, the model has been found to be adequate for the case of He target [29, 30].

FINAL STATE ANALYSIS

In order to see whether an electron is captured selectively into a favored level and whether the oscillation is caused by the change of such a level, we have measured translational energy spectra of charge-changed incident ions. The final excited state of the ion after electron capture can be identified by the translational energy gain of the ion scattered in the forward direction. For the favored channel, capture occurs at a crossing in the potential curves during collisions, and the translational energy generally is increased, i.e., the potential energy difference between initial and final states is converted to translational energy. We have made a series of measurements of the energy gains of almost all the incident ions shown in Fig.3 at low energies (1 and 2 keV/q), to analyse the final states after electron capture. The measured energy gains ΔE are compared to the reaction energies calculated from the book of Bashkin and Stoner[36], and the final states of the charge-changed primary ions are determined.

Figure 4 shows the translational energy-gain spectra for low energy (1 keV/q), fully stripped ions of C^{9+} and O^{9+} incident on He. In this figure, calculated energy levels are also indicated, corresponding to some principal quantum numbers n of the product C^{5+} and O^{7+} ions after electron capture, and it is clearly shown that only single peaks are observed which correspond to the n=3 for the product C^{5+} and the n=4 for O^{7+}. Selective electron capture into these levels is in good agreement with the prediction of the classical consideration in [29, 30]. The change of the final state, n=3 for C^{5+} + He collision to n=4 for O^{7+} + He, should give rise to a
Fig. 3. Measured cross sections $\sigma_{q,q-1}$ at 0.8 keV/amu as a function of the ionic charge q of projectile ions. Dotted line is obtained from an empirical formula of Müller and Salzborn [25].

\[C^{6+} + He \rightarrow C^{5+}(n_1) + He^+(n_2) \]

Fig. 4. Typical energy gain spectra of forward scattered C^{5+} and O^{7+} ions in $C^{6+} + He$ and $O^{8+} + He$ collisions at 1 keV/q.
significant difference in the total cross sections for one-electron capture by \(\text{C}^6^+ \) and \(\text{O}^8^+ \). Actually, as seen in Fig.3, the cross section for \(\text{O}^8^+ \) is about three times as large as that for \(\text{C}^6^+ \).

In a series of systematic observation of energy spectroscopic work, we have found that, in almost cases studied here, the electron is captured into a selective level with a particular quantum number \(n \) of the product ion, and also found that there is good similarity among the energy spectra for ions having the same charge state \(q \). As an example, energy spectra for \(\text{A}^6^+ + \text{He} \) (A = C, N, O, F) collisions are shown in Fig.5. In each spectrum only a single peak is observed at the energy gain of around 30 eV and it corresponds to the one-electron capture into the \(n=3 \) of the product \(\text{A}^5^+ \). This similarity is considered to be due to the similarity of the potential curves for the collision systems between \(\text{A}^6^+ \) and He. The diabatic potential curves are present in Fig.6 for \(\text{A}^6^+ + \text{He} \) (A = C, N, O, F). This figure illustrates good similarity among the potential curves of these collision systems, that is, for the final channels of \(\text{A}^5^+ (nI) + \text{He}(1s) \): \(n \geq 3 \), these curves are dependent little on the number of core electrons of incident ions and, as a result they are very

![Energy gain spectra of forward scattered product ions \(\text{A}^5^+ \) in \(\text{A}^6^+ + \text{He} \) collisions at 1 keV/q (A = C, N, O and F).](image-url)

Fig. 5. Energy gain spectra of forward scattered product ions \(\text{A}^5^+ \) in \(\text{A}^6^+ + \text{He} \) collisions at 1 keV/q (A = C, N, O and F).
similar. Therefore, such similarity should give the similarity in the energy spectra for the one-electron capture processes by various projectiles having the same charge state \(q = 6 \) from He. For other collision systems, similarities in the energy spectra for different ions with the same \(q \) are seen in almost cases.

![Diagram](image)

Fig. 6. Diabatic potential curves for one-electron capture process, \(\text{O}^6+ (1s^2) + \text{He} (1s^2) \rightarrow \text{O}^5+ (1s^2n\ell) + \text{He}^+ (1s) \), and energy diagrams for channels of one-electron capture into \(\text{O}^5+ (1s^2n\ell) \), \(\text{N}^5+ (1s^2n\ell) \), \(\text{C}^5+ (n\ell) \) and \(\text{F}^5+ (1s^22n\ell) \) levels.

Therefore, we will classify and summarize the measured spectra according to the charge state \(q \) rather than the iso-electronic sequence of the incident projectiles. In Table 1, are summarized the principal quantum number \(n \) into which the electron is captured, the energy gain \(\Delta E (eV) \) measured in the spectra and the calculated crossing radius \(R_c (\text{Å}) \) in the diabatic potential curves. In a few cases studied, there are weak peaks observed in the energy-gain spectra around the dominant peak. In this table, are shown the values of \(n \), \(\Delta E \) and \(R_c \) corresponding to such the dominant peaks. Good similarities of \(n \), \(\Delta E \) and \(R_c \) among the same \(q \) are also shown, in this table, for the various \(A^q + \text{He} \) systems. Furthermore, with increasing \(q \), the \(n \) increases stepwisely, while the \(R_c \) shows non-monotonic increase. This behavior is shown in Fig.7. The dashed line is drawn in order to visualize the strong oscillation with \(q \). As described earlier, the oscillation of the one-electron capture cross sections is thought to be caused by the capturing-level change and resultant drastic change of the crossing radius \(R_c \). This prediction is seemed to be confirmed here qualitatively by observing \(R_c \)-oscillation with \(q \).

However, there are some discrepancies between the prediction and the measurements. For instance, the change of the level from \(n = 3 \) for \(\text{C}^6+ \) to \(n = 4 \) for \(\text{N}^7+ \), and from \(n = 4 \) for \(\text{F}^8+ \) to \(n = 5 \) for \(\text{Ne}^9+ \) should cause a significant increase in the \(q \)-dependent cross sections. But the cross sections, as seen in Fig.3, change little and/or decrease toward higher charge state. Therefore, it is expected that there should be another rule in determination of the \(q \)-dependence of the cross sections for one-electron capture, in addition to the selection and its variation of the final capturing state.
Table 1 Principal quantum number n, energy gain ΔE(eV) and crossing radius R_c(Å), obtained from the dominant peaks in the energy gain spectra for the collision systems:

$$A^{q+} + \text{He} \rightarrow A(q-1)^+(n) + \text{He}^+ + \Delta E.$$

<table>
<thead>
<tr>
<th>A</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>11</td>
<td>26</td>
<td>31</td>
<td>14</td>
<td>3</td>
<td>14</td>
<td>42</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>24</td>
<td>31</td>
<td>3</td>
<td>16</td>
<td>3.6</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>3.1</td>
<td>3</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. Crossing radius R_c(Å) of one-electron capture processes in $A^{q+} + \text{He}$ collisions as a function of the ionic charge q of projectile ions, ($A = C$, N, F and Ne). Principal quantum number n into which an electron is captured is also shown.
In order to search for the additional rule, we arranged the measured cross sections at 0.5 keV/amu as a function of the derived crossing radius R_c. According to this arrangement (see in [36]), the R_c-dependence of the one-electron capture cross sections does not increase monotonically but seems to have a peak structure. This fact implies that the electron capture process prefers the final states of the product ions which correspond to crossings at some suitable internuclear distances.

The existence of a maximum in the cross sections at a particular crossing radius has been reported by some investigators for various collision systems at different energy ranges [40, 41, 42, 43] and is often called the "reaction window". This window shape seems to be similar for the various cases reported. Accordingly, it tends to be believed to be universal for all the collision systems. This behavior is qualitatively understood by considering the exponential decrease of quasi-molecular-coupling with the crossing radius. It is, however, necessary to analyze more carefully the observed data before coming to such a conclusion, because there should always exist multicrossings in the diabatic potential curves for the collision systems. Even though the observed energy-gain spectrum consists of a single peak, this does not always guarantee the single crossing in the diabatic potential curve. In fact, the energy-gain spectra in the collision system, for example, between Li-like ions and He become broad indicating the contribution of a number of peaks corresponding to the levels with different orbital quantum number ℓ. We have no accurate idea on which and how many crossings do contribute to the observed apparent single peak in the energy-gain spectrum because of a limited energy resolution used in the experiments. For such a collision system where the sublevels having the same n but different ℓ result in many crossing closely located in the potential curve, an optical measurement can be a powerful complementary work, as described later.

Further experimental studies have been in progress for the collision systems of $S^{1+} + S^{3+}$ and Kr^{q+} ($q=10-25$) with He in order to observe what happen in higher q projectile collisions. The measured energy spectra are shown in Fig.8 for some cases in the $Kr^{q+} + He$ systems at low energies (1 keV/q). Though the energy levels for highly charged Kr^{q+} ions are not known, it should be noted that the energy spectrum in all cases studied here consists of the dominant "apparent" single peak with a relatively narrow width, and, in general, the values of $\Delta E/q$-1, the observed energy gain divided by the product charge state, becomes smaller with q, that is, the derived crossing radius R_c where an electron is transferred in the potential curves becomes consequently larger with q. We arranged once again the measured total one-electron capture cross sections as a function of R_c, as seen in Fig.9. In contrast to the result of the former arrangement for the collision systems involving relatively lower charge ($q<10$) projectiles, the measured cross sections do not have a maximum at a particular R_c but seem to follow the classical cross section R_c rule.

We cannot clearly understand this phenomenon but may roughly consider as follows: At a given q and energy in slow collisions, there should be a favored region of R_c in the diabatic potential curves where the cross sections have large values, and when the proper crossings fortunately exist in this favored region, electron capture effectively occur in the $A^{q+} + He$ system. The maximum R_c of this region becomes larger and the width of the favored region becomes wider with increasing q.

In the cases of lower q ($q<10$) projectiles having no more than a few electrons, an opportunity that the proper final states fit into the favored $R_c(q)$ may strongly depend on the electronic structure of the product $(q-1)$ ion and is accidentally afforded for particular projectiles, since the final states of such product ions should be located discretely for the smaller principal quantum number ($n \leq 5$) into which the electron is captured. In Fig.9, the projectiles whose cross sections are much smaller than $1/2\pi R_c^2$ may have not suitable final states for electron capture with their q and collision energy. According to multicrossing consideration of Landau-Zener type, for small R_c the cross section for electron transfer is much smaller than πR_c^2, because, even if there are several crossings available, only a single outer-most crossing becomes effective. This should be reason why
the existence of maximum in the q-dependent cross sections was observed for the lower q projectiles at low energies.

On the other hand, higher charged (q ≥ 10), but partially stripped projectiles may have abundant opportunities to capture an electron from He during collisions. For these projectiles, the electron should be transferred in the larger R_c region and into a larger principal quantum number around which a number of levels including sublevels are densely located. And the number of crossings increases with R_c and q. Under this situation, there are a fair chance in higher q collision for several final states to fit into the favored R_c with a broad width. In addition, the multi-crossing Landau-Zener consideration shows that when several crossings exist at larger R_c, all of them may contribute to the total electron transfer processes. Then even if the diabatic transition probability is small for a single crossing, the total cross sections should be larger with the number of the crossings. Therefore, for the observed collision systems between Sq^+, Krq^+ and He where there should be a number of crossings available, the total cross section may increase with R_c and tend to come up to the maximum cross section πR_c^2.

For the higher q collision systems where the electron is transferred into the densely...
located levels of large n - simulated to quasicontinuum, it is expected that the
total cross sections obey the scaling law as described earlier. The total cross
sections for one-electron capture by Kr^{q+} from He are shown in Fig.10 as a function
of the primary charge state q in slow collisions, together with a empirical scaling
law of MÜLLER and Salzborn. As seen in this figure, strong oscillation in the cross
section is observed for lower q, but it tends to diminish toward higher q and the
q-dependence of the measured cross sections becomes in good agreement with the empirical
scaling of the cross sections.

In discussion of the electron capture process into quasi-continuum states, we want
to refer to the width of favored region at large R_c for higher q collisions. For
each energy spectrum of Kr^{q+} + He system, the observed energy spread seems to be
narrow. From a simple deconvolution, the half-width of favored R_c region is less
than 1 A at R_c=4.7 A for the collision system: Kr^{14+} + He → Kr^{13+} (product). This
width seems to be much narrower than that expected from Landau-Zener calculation.
This shows that the crossings in the narrow region at a given R_c in the diabolic
curves of the collision system should be very effective and make an important contribu-
tion to the total cross sections. Such a conclusion is very similar to that of
"absorbing-sphere model" of the multicrossing systems [46].

Above consideration is one of the possible discussions to pursue knowledge of elec-
tron capture process in the complicated collision systems such as highly stripped
ion-multielectron atom collisions, through a series of our recent investigation.

![Cross section vs. Initial charge state](image)

Fig.10 Total cross sections for one-electron capture as a function of the
ionic charge q of projectile ions. Dotted line is obtained from
a empirical formula of MÜLLER and Salzborn [25], ●: Kusakabe et al.
[15], ○: Cocke et al. [44], ■: present results.

Very recently, many laboratories have engaged in intense investigation of final-
state-selected electron capture processes by highly stripped ions from atoms in
slow collisions, by aid of the translational energy spectroscopy method. Earlier
studies of this kind was carried out by Panov et al. [46] for Ar^{5+} + He in slow
collisions below 120 keV. They measured the partial cross section for electron
transfer into 4s, 4p, and 3d states of Ar^{5+}. Recently Mann et al. [47] observed
selective electron capture by Ne$^{9+}$ and Ne$^{10+}$ from rare-gas targets at energies below 500 eV using recoil ions. They continue doing a systematic work of electron transfer collisions. McCullough et al. [48] and Huber et al. [49] have observed the state-selective electron capture processes for low q collision systems in good energy resolution.

One of the advantages of this method is the small necessity of the primary ion intensity. Intensity of 10$^{-2}$ counts/sec is sufficient to determine the energy spectra. Another is that the electron transfer into the ground state of the product ion can be observed. However, in order to observe the closely located final states such as K states, it is hard to separate them in the energy spectrum at the present energy resolution as yet. As described before, spectroscopic studies of the radiative decay of the excited product ions may be used to obtain information on K-state-selective capture processes.

Of course, if K-states in the same n are discretely located in energy, it is possible to observe these states separately. Kimura et al. [33] observed 1S2 distributions of captured electrons in the reaction at 1 keV/q,

$$\text{C}^3+(1s^22s) + \text{He} \rightarrow \text{C}^2+(1s^2n\alpha n'\tau ') + \text{He}^+(1s)$$

It is found that an electron is captured selectively into particular states of C$^2+$ (1s22s22). The measured partial cross sections were compared with the Landau-Zener cross sections. Recently, Lennon et al. [50] measured these partial cross sections as a function of collision energy (3 - 18 keV). They observed that electron capture processes into the C$^2+$ (1s22p2) states involving a change in the electron-core configuration of the primary ion, contribute significantly to the total cross sections at higher energies. For the N$^4+$ + He collision, the reaction of electron transfer involving a change of core configuration is predominant compared with simple one-electron transfer in slow collisions [33].

The measurement of the 1S2-distributions in electron capture processes should be important to understand electron translational mechanisms such as the momentum transfer process to captured electron. There are several theories considering the 1S2-distributions in the cross sections. However, the measurements of the 1S2-dependent cross sections have been scarcely performed for highly stripped ion collisions at low energies, because we could not have an intense slow ion beam with higher charge state, by use of which it is possible to detect photons emitted after the collision. Recently, Afrosimov et al. [51] could measure the emission cross sections for the characteristic X-ray radiation accompanying the electron capture by C$^7+$ and O$^8+$ from H$_2$ at low energies, using EBIS source, "KRION-2" at Dubna. Bliman et al. [52] also measured the partial cross sections for electron capture into 1S2 sublevels in n=3 by C$^4+$ and O$^6+$ from H$_2$, using their ECRIS source "MINIMAFIOS" at Grenoble, from optical spectroscopic measurements.

Very recently, detailed spectroscopic measurements have been performed by Gordeev et al. [53]. These experiments have been made as a collaboration between FOM (de Heer, Dijkkamp et al.) and Technical University Vienna (Winter et al.) and carried out at Groningen, using the MINIMAFIOS-type ion source. The cross sections for electron capture into different n2 state for A$^6+n(A = C, N, O, Ne)$ + He, H$_2$ collisions at low energies have been measured. They measured the absolute intensities of the various emitted lines corresponding to the transitions between different n2 levels of the product A$^5+$ ions, and deduced emission cross sectionsσ_{em}. From theσ_{em} values they obtained the cross sections for electron transfer into n2 states, σ_{n^2}, by taking into account all possible cascading effects. In Fig.11 are shown the deduced σ_{n^2}, together with $\sigma_{n^2} = \Sigma \sigma_{n^2} \alpha_{n^2}$ and $\sigma_{n^2} = \Sigma \sigma_{n^2} \tau_{n^2}$ for N$^6+$ and O$^6+$ + He systems as a function of collision velocity. As seen in Fig.11, the deduced cross sectionsσ_{n^2} are in good agreement with the previously measured results by Crandall [54] and Iwai et al. [30]. For A$^6+$ + He collisions, it is found that the electron is dominantly captured into the n=3 state and that there are good similarities between N$^6+$ + He and O$^6+$ + He, both in the absolute value and in the velocity dependence of the cross sections.
These similarities among the same q are also in good agreement with the results before [35] (e.g. see in Fig.5 and 6). It is remarkable that σ_q and σ_p do not show significant dependence on the collision velocity, while $\sigma_{\|}$ show a strong redistribution of the λ-sublevel population over the studied velocity range. At present, theoretical calculations which can be compared directly with the observed data do not exist, the only available calculations dealing exclusively with fully stripped ion-atomic hydrogen collisions. However, the observed strong redistribution is rather unexpected. The theories predict more or less fixed λ-distributions over a wide velocity range. At a point of experimental view, since it is not easy to measure separately radiation lines from different ℓ states of the H-like product ions of the fully stripped ions-He collisions systems, we expect the theoretical calculation of the λ-dependent cross sections for electron capture by a simple, highly stripped ion from a He atom.

![Graphs](image)

Fig.11. Partial σ_q, σ_p and total σ_t cross sections for one-electron capture as a function of velocity in N^{6+} and O^{6+} + He collisions. From ref. [52]. \triangle: σ_t Iwai et al. [30]., \circ: σ_t Crandall et al. [54].

FURTHER REMARKS

One-electron capture processes in collisions between highly stripped ions and He atoms at low energies are discussed. The cross sections are very sensitive to the details of the potential curves of the quasimolecular collision system. Electron capture may take place effectively through the favored region of crossing radius R_C. For the lower q ion and He system, the crossing points are discretely located in the potential curves. Therefore, the value of the cross sections are determined by the coincidence of the specific crossing with the favored R_c. It may cause the drastic change of the q-dependent cross sections. On the other hand, for higher q collisions the system may have a large opportunity of overlapping each other because of the quasicontinuum state of the final channles. Therefore, the cross sections for electron capture by higher q ions become quasi-stationary in character and tend to agree with the cross sections derived from a scaling law.

Finally, we would like to refer briefly to the transfer ionization processes, which are intensively investigated by several groups, and are reviewed by Niehaus [55],
Kishinevskii and Parilis [56] and by Müller [64]. Transfer ionization processes are essentially important for the multielectron target systems and may make a large contribution to other electron transfer processes. Final states in these processes have been analyzed mainly by measuring the energy spectrum of emitted electron during or after collision [57 - 61]. Winter et al. [57] have determined the total cross sections for electron production, \(\sigma_\text{e} \), for rare gas ions and rare gas targets systems. Their results showed that \(\sigma_\text{e} \) values become larger for high q ion collisions, when the relevant transfer ionization processes become exothermic. Recently, Justiniano et al. [62] and Grohe et al. [63] have measured the transfer ionization processes applying coincidence in charge state selection of both the-projectile-and target-ion. In their measurements of charge state distribution of target ions from two-electron capture, target ions with high charge state are formed in the transfer ionization process, with increasing q of projectile ions. Autoionizing states of the projectile formed after two-electron transfer or capture of inner-shell electrons from the target with subsequent Auger decay can become quite important when q is so high that these processes are exothermic. This experiment is powerful for understanding the transfer ionization mechanisms because the process can be distinguished from the direct ionization but the experiment can not give us information on the role of the final states in this collision system.

In Fig.12, the translational energy spectra are shown for the collision system:

\[\text{N}^7++ \text{He} \rightarrow \text{N}^6^+(nl) + \text{(product)}. \]

It is also seen in this figure that there is good similarity among the spectral patterns for the same charge state of projectiles (q=7), irrespectively of ionic species. The dominant peaks at around 20 eV of energy gain observed in all the energy gain spectra are corresponding to the one-electron transfer into the n=4 of the product final state. This similarity results from the similarity among diabatic potential curves for the collision systems of \(\text{N}^7+ + \text{He} \), as described before. Besides the dominant peaks, there are weak peaks at around 70 eV in all the energy gain spectra observed for the \(\text{N}^7+ \) collisions. In \(\text{N}^7+ + \text{He} \) systems, these peaks are assigned as being due to the following transfer ionization via two-electron capture into the autoionizing states of \(\text{N}^5^+ \) and \(\text{O}^5^+ [32] \),

\[\begin{align*}
\text{N}^7+ + \text{He}(1s^2) & \rightarrow \text{N}^5^{**}(3s3s') + \text{He}^2+ + \Delta E \\
& \rightarrow \text{N}^6++ \text{He}^2+ + e \\
\text{O}^7+ + \text{He}(1s^2) & \rightarrow 0^{5**}(1s3s3s') + \text{He}^2+ + \Delta E \\
& \rightarrow 0^6++ \text{He}^2+ + e.
\end{align*}\]

From the similarities of the diabatic potential curves and of the measured energy spectra with the same q for different ions, which are observed for the various charge state (q=5,6,7,8), the weak peaks at around \(\Delta E=70 \) eV for \(\text{F}^7+ \) and \(\text{Ne}^7+ \) collisions are thought to be due to the transfer ionization processes via two-electron capture into \(0^5(1s2s2s\bar{s}) \) and \(0^6^+(1s2s3\bar{s}) \), respectively, though it is not possible to assure this because no information on the energy levels of such doubly excited states is available presently.

Thus the translational energy spectroscopy may give us useful information regarding the final states of the transfer ionization processes, though we can not distinguish perfectly between transfer ionization and direct ionization. Further experiment such as a coincidence experiment between an energy-analyzed projectile-ion and a charge-separated target-ion would supply more detailed information.

ACKNOWLEDGMENTS

I am very grateful to many investigators who have sent me their latest, often unpublished results. As an expression of my appreciation of their generous help, I
Fig. 12. Energy gain spectra of forward scattered product ions A^6+ in A^7+ + He collisions at 1 keV/q (A = N, O, F and Ne). Weak and broad peaks at around 70 eV of energy gain are thought to be due to transfer ionization processes.
list here their names: V.V. Afrosimov, S. Bliman, C.L. Cocke, D. Dijkkamp, H.B. Gilbody, B.A. Huber, P. Hvelplund, T. Kusakabe, F.W. Meyer, M.H. Prior, I.A. Sellin and H. Winter. A review article of F.J. de Heer is very useful for studying this subject. I would like to thank all the members of NICE group for their collaboration and discussion through the experimental study of electron capture processes at Nagoya. Special thanks are due to A. Matsumoto and S. Takagi for helpful discussion and for preparing this manuscript.

REFERENCES

2. Symposium on collisions of multiply charged ions with atoms (dedicated to Jim McDonald) and other articles in Proceedings ICPEAC XII in Gatlinburg 1981, Invited Papers, ed. S. Datz (North Holland, Amsterdam, 1982).
11. D.H. Crandall, see [ref.9, p.249].
14. T. Kusakabe, H. Hanaki, N. Nagai, T. Horuchi and M. Sakisaka, see [ref. 9, p.191].
15. Aarhus group, private communication from P. Hvelplund.
17. M.H. Prior, R. Marrus and C.R. Vane, Submitted to Physical Review A.
18. R. Geller and B. Jacquot, see e.g. [ref.9, p.19].
19. E.D. Donets, see e.g. [ref.9, p.11].
20. H. Winter in ref. 10.
29. T. Iwai, Y. Kaneko, M. Kimura, N. Kobayashi, S. Ohtani, K. Okuno, S. Takagi,
34. S. Ohtani see [ref.9, p.110].
42. B.A. Huber see [ref.9, p.96].
43. H. Winter see [ref.9, p.159].
46. M.N. Panov, see [ref.11, p.437].
55. A. Niehaus, Comments on Atomic and Molecular Physics IX, 153 (1980).
61. H. Knudsen, P. Hvelplund, L.H. Andersen, S. Bjørnerlund, M. Frost, H.K. Haugen and E. Samsø, see [ref.9, p.101].
64. A. Müller, Progress report in ICPEAC XIII in Berlin 1983.
Translational energy spectroscopy of one-electron capture processes in He$^{2+}$–H$_2$ and –N$_2$ Collisions

Nobuo Kobayashi,† Tsuruji Iwai,† Yozaburo Kaneko,*
Masahiro Kimura,** Atsushi Matsumoto, Shunsuke Ohtani,
Kazuhiro Okuno,* Shoji Takagi, Hiroyuki Tawara
and Seiji Tsurubuchi****

Institute of Plasma Physics, Nagoya University, Nagoya 464

(Received July 14, 1984)

Translational energy spectra of He$^+$ ions produced by one-electron capture processes in collisions of 0.8 and 2 keV He$^{2+}$ with H$_2$ and 0.8 keV He$^{2+}$ with N$_2$ have been measured with an electrostatic energy analyzer. The spectra show only a single broad peak with the energy gain of about 11 eV for all the cases. The peak in each spectrum becomes broader with the increase of the collision energy. It is found that the product He$^+$ is in the ground state and the capture process is associated with the dissociation and/or ionization of the product molecular ion.

Electron capture processes of He$^{2+}$ ions in collisions with atoms and molecules are of great importance in the fields of thermonuclear fusion research and astrophysics. The cross sections for such processes have been widely measured by many workers, and a number of data have been compiled.¹ For better understanding of the electron capture processes, translational energy spectroscopy of product ions provides useful information. Panov² studied the electronic states of the He$^+$ ions formed in collisions of He$^{2+}$ with noble gas atoms, He, Ne, Kr and Xe, using a translational energy spectrometer. As far as we know, however, such a study has not been made with molecular targets.

We have systematically studied electron capture processes by highly charged ions, including fully stripped ions of B, C, N and O, in collisions with He.³ Especially, the final state analysis of the product ions by a translational energy spectroscopy has provided valuable information for understanding electron capture processes by highly charged ions. In the present work, as one of the serial studies of such electron capture processes, we have measured the translational energy spectra of He$^+$ ions in collisions of He$^{2+}$ with H$_2$ and N$_2$ at the collision energies of 0.8 and 2 keV. He$^{2+}$ ions are produced in an ion source of EBIS type (NICE-I)³ by introducing 4He gas. The ion beam of 4He$^{2+}$ extracted from the source is contaminated with H$_2^+$ ions, and therefore, cross section measurement has not been made. However, translational energy analysis of the product He$^+$ ions can be made with an electrostatic analyzer, because the energy of the product He$^+$ ions is roughly $2V_{\text{acc}}$(eV) while that of H$_2^+$ is $1V_{\text{acc}}$(eV), where V_{acc} is the acceleration potential of the ions in the ion source.

In Fig. 1(a) and (b) are shown the translational energy spectra of the product He$^+$ ions in the He$^{2+}$–H$_2$ system at the collision energies of 0.8 and 2 keV, respectively. The full width at half-maximum (F.W.H.M.) of the energy spread of the primary beam is about 1.5 eV. The spectra of the product He$^+$ ions show only a single peak and have a maximum at the energy gain of about 11 eV. The tails of the spectra at low energy gain side seem to be ex-
Fig. 1. Translational energy spectra of He+ in the He2+–H\textsubscript{2} system at the collision energies of 0.8 keV (a) and 2 keV (b), and the potential energy curves of H\textsubscript{2} and H\textsubscript{2}+ (c). The potential energy of 54.4 eV, corresponding to the ionization potential of He+, is joined to the origin of the lower energy gain spectra.

If the product He+ and H\textsubscript{2}+ are in the ground electronic and vibrational states, the exothermicity of the reaction will be 39.0 eV. However, no peak has been found at such a large energy gain. On the other hand, if the electron is captured into the excited state of He+, for example $n=2$, the process must be endothermic and the excess energy is -1.81 eV for the production of the ground electronic and vibrational state of H\textsubscript{2}+. In the spectra, no appreciable peak has been observed at the energy loss side.

Nutt et al.4) measured the total cross sections for the one-electron capture processes in the energy range from 0.6 to 15 keV and reported that the cross section is 2.7×10^{-16} cm2 at 15 keV and gradually decreases down to 0.8×10^{-16} cm2 at 0.8 keV. On the other hand, Shah et al.5) and Khayralla and Bayfield6) measured the cross sections for the formation of He+(2s) in He2+–H\textsubscript{2} collisions in the energy range from 10 to 80 keV. Their results show that the cross section has a maximum of about 9×10^{-17} cm2 around 60 keV.
and sharply decreases with the decrease of the collision energy. From these results, the cross section of the formation of He\(^+\) (e=2) is expected to be negligibly small compared to the total cross section for one-electron capture. The present result is consistent with their results, and therefore, the product He\(^+\) is considered to be in the ground state. This means that most of the excess energy is converted to the internal energy of H\(_2\)+.

The internal energy converted to H\(_2\)+ is estimated by subtracting the translational energy gain of the product He\(^+\) (about 11 eV) from the excess energy of the reaction (39 eV). This energy is so much that the product H\(_2\)+ cannot be stable and is dissociated to H\(^+\)+H\(^+\). Besides, the energy 39 eV is much larger than the sum of the ionization energy of H atom (13.6 eV) and the dissociation energy of H\(_2\)+ (2.6 eV). Therefore, one-electron capture process in the He\(^2+\)+H\(_2\) system can be associated with ionization in addition to dissociation of H\(_2\)+; namely,

\[
\text{He}^2+ + \text{H}_2 \rightarrow \text{He}^+ + \text{H}_2^+ + \Delta E, \quad (1)
\]

\[
\downarrow \rightarrow \text{H}^+ + \text{H}^*, \quad (2)
\]

\[
\text{He}^2+ + \text{H}_2 \rightarrow \text{He}^+ + \text{H}_2^* + e + \Delta E, \quad (3)
\]

\[
\downarrow \rightarrow \text{H}^+ + \text{H}^+. \quad (4)
\]

As a reference, the potential energy curves of H\(_2\)+ are shown in Fig. 1(c). In this figure, the origin of the potential energy is taken to be at the ground state of H\(_2\). If all of the excess energy were converted to the internal energy of H\(_2\)+, that is to say \(\Delta E=0\), the energy just equal to the ionization potential of He\(^+\) (54.4 eV) should be transferred to the target H\(_2\). The potential energy of 54.4 eV is, then, joined to the origin of the energy gain spectra. Therefore, the potential energy corresponding to the peak of the translational energy spectra means the energy transferred to the target.

In Fig. 1(c), the Frank-Condon region of H\(_2\) molecule is shown with two dashed lines. If the Frank-Condon vertical transition is important in the present case, the product molecular ions should be dissociated and H\(^+\)+H\((n \geq 2)\) are expected to be produced through the repulsive state of H\(_2\)+ (eq. 3). On the other hand, if the Frank-Condon principle is not held, the one-electron capture process in the H\(_2\)+–H\(_2\) system can be associated with the ionization (eq. 4).

When the potential curve of the left hand side of the reaction (3) is represented simply by a flat line, and that of the right hand side by a curve of the Coulomb repulsion force, the potential curves cross each other at 1.3 Å. It is well known that only a reaction channel which has a potential crossing within 3–5 Å can give large cross section of the order of 10\(^{-15}\) cm\(^2\) and the channels whose crossing points are outside of this region cannot have appreciable cross section.\(^7\) This is considered to be the reason that Nutt et al. reported a small cross section, 0.8 \times 10\(^{-16}\) cm\(^2\) at the collision energy of 0.8 keV, for this reaction.

In Fig. 2 is shown the translational energy spectrum of the product He\(^+\) by 0.8 keV He\(^2+\) incident on N\(_2\). The shape and the peak position are almost the same as those for H\(_2\) target. From the energy consideration, the product He\(^+\) is considered to be in the ground state. Since the ionization potential of He\(^+\) is 54.4 eV and the translational energy released to the products is about 11 eV, the energy of about 43 eV is considered to be transferred to the internal energy of the target molecule. The appearance energy of N\(_2\)+ is about 43 eV.

Therefore, the one-electron capture process in the He\(^2+\)+N\(_2\) system may also be associated with ionization as well as dissociation of N\(_2\)+.

Search for the ionized electrons or analysis of the charged products from target molecules is needed for further studies.

References

1) K. Okuno: IPPJ-AM-9. (Institute of Plasma
Physics, Nagoya Univ. (1978).

ELECTRON CAPTURE IN $1^+ (q = 10^{-41}) + \text{He}$ COLLISIONS AT LOW ENERGIES

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

One electron capture processes in $1^+ (q = 10^{-41}) + \text{He}$ collisions at low energies have been investigated. It is found that total cross sections for one-electron capture processes increase roughly linearly with increasing charge q of the incident ions and also increase with the square of the crossing radius R_c of the diabatic potential energy curves where the electron transfer takes place. These smooth increases are in contrast to those observed for ions with low charge $q < 10$.

1. Introduction

Recently the electron capture processes of highly ionized ions at low energies have been recognized to be important in many fields. A number of experimental [1] and theoretical [2] studies have been published. However, most of the experimental works have been limited to charge $q < 10$. Only few experimental results have been treated for ions with $q \geq 10$. Justiniano et al. [3] have recently reported their results of measurements of total cross sections for electron capture processes for Kr$^+*$ and Xe$^+*$ ions with the charge q up to 14. We have also presented our recent results of total cross sections for one-electron capture for Xe$^+*$ ions with q up to 25 [4]. A significant difference has been found in electron capture processes between ions of $q < 10$ and those of $q \geq 10$. In the former, total cross sections for one-electron capture oscillate significantly as a function of the charge q and have a maximum at a particular crossing radius ($R_c \sim 3.5$ Å) [5]. On the other hand, total cross sections for the latter increase smoothly with increasing the charge and also with increasing R_c [4].

The present work is concerned with measurements of total cross sections for one-electron capture processes of $1^+ (q = 10^{-41})$ ions in collisions with He atoms at low energies.

2. Experiments

The experimental apparatus is practically the same as that described previously [6]. HI gas is introduced into an electron beam ion source, NICE-1, up to 1×10^{-9} Torr. Using an electron beam of 9.1 mA/3.6 keV, 1^+He ions with q up to 42 are observed with a very weak trace of 1^{2+}He. In the present work, two types of measurements have been done. Firstly, total cross sections for one-electron capture processes are measured by observing the intensity of charge-changed ions (1^{1+}He^*) as a function of the target gas pressure. Secondly, by measuring the energy gain in collisions, the crossing radii of the diabatic energy levels where electron transfer takes place are determined. It is found that the observed results are nearly independent of the collision energy investigated over $0.75 \times q$ to $2.25 \times q$ keV.

3. Results

3.1. Dependence of total cross section on incident ion charge

The total cross sections of one-electron capture processes in 1^+He collisions measured at the energy of $1.25 \times q$ keV are shown in fig. 1 as a function of the incident ion charge q, together with results for Kr$^+*$ by Iwai et al. [4], Cocke et al. [7], Kusakabe et al. [8] and Justiniano et al. [3]. It is clearly seen that all these data for different ions with the same charge tend to lie on a single curve. The oscillation of the cross sections is noticed for ions of $q < 10$ as discussed before and can be explained in terms of a similar mechanism found in relatively light ions such as C, N and Ne ions, where a particular single or very few levels are found to play a key role in electron capture processes. On the other
Fig. 1. Cross sections of one-electron capture processes in 1^+ + He and Kr$^+$ + He collisions at around $1 \times q$ keV as a function of the ion charge q.

However, the cross sections for ions with $q \geq 10$ increase relatively smoothly with increasing the incident ion charge q. Also in fig. 1 is shown a curve based upon a semi-empirical scaling law by Müller and Salzbom which was derived using data of ions with $q < 10$ [9].

![Fig. 2. Energy gain spectra in 1^+ + He collisions. Stronger peaks correspond to one-electron capture processes and weaker peaks possibly to transfer ionization.](image)

3.2 Dependence of total cross section on crossing radius

The energy gain spectra have been observed for 1^+ ions with q up to 38 and it is found that the observed peaks shift toward smaller values of $\Delta E/q$ (ΔE: the energy gain) with increasing q. Using the observed energy gain ΔE, the crossing radius R_c in diabatic energy levels of quasi-molecules can be determined by $R_c(\AA) = 14.4(q - 1)/\Delta E(\text{eV})$. It should be noted that all the observed energy gain peak looks like a single peak but, because of the limited energy resolution of the present experimental apparatus, corresponds to that averaged over a number of the possible levels contributing to the electron capture processes (see fig. 2).

In fig. 3 are shown the measured total cross sections for one-electron capture in 1^+ + He collisions as a function of the observed crossing radius R_c, together with our previous results for Kr$^+$ + He collisions. From this figure it is clear that most of the observed cross sections increase roughly with the square of R_c and lie between the classical cross section ($\frac{1}{2}\pi R_c^2$) and the geometrical cross section (πR_c^2), indicating that the classical picture is valid for one-electron capture of ions with very high charge. This smooth increase of the cross section with increasing q is in significant contrast with those previously observed in ions with $q < 10$ [5].

4. Remarks

In the present work we have extended the previous measurements of one-electron capture processes for ions with q up to 41 and found that total cross sections are nearly constant over the energy range investigated and increase smoothly with increasing incident ion charge q and also with increasing the crossing radius R_c. This smooth variation is quite in contrast to that for ions.
with \(q < 10 \) and can be understood qualitatively, assuming that a number of the excited states are available in one-electron transfer processes in heavy, highly ionized ions.

Unfortunately, little is known on the energy levels of ions in such a highly ionized state and it is not possible to get accurate information of the electron-capturing levels which are located mostly in the Rydberg states. However, the energy levels in which the electron is captured in such highly ionized ions can be assumed to be hydrogenic and, then, some estimation on the electron-capturing levels can be made. Typically, the electron is captured into \(n = 5 \) for \(\text{I}^{10+} \) ions and into \(n = 15 \) for \(\text{I}^{38+} \) ions which are in fairly good agreement with the classical model [10].

Based upon the hydrogenic energy levels, we have also tried to calculate total cross sections using the multi-channel Landau–Zener model [11] which is found to be able to reproduce quite well the present experimental results. We should also note that theoretical as well as experimental works are still limited for ions of \(q > 10 \). The fully detailed description will be given in a forthcoming publication.

This work was made as a part of the Guest Research Program at the Institute of Plasma Physics, Nagoya University.

References

Electron capture processes of I^+ ions with very high charge states \((41 \geq q \geq 10)\) in collisions with He atoms

H Tawara, T Iwai†, Y Kaneko‡, M Kimura§, N Kobayashi‖, A Matsumoto, S Ohtani, K Okuno‡, S Takagi and S Tsurubuchi†

Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan

Received 29 June 1984, in final form 14 August 1984

Abstract. One-electron capture processes of iodine (I^{q+}) ions with very high charge \(q\) up to 41 in collisions with He atoms at low energies have been investigated using energy gain spectroscopy. It is found that total cross sections increase with increasing charge of ions \(q\), and also increase roughly with the square of the crossing radius \(R_c\) of the diabatic potential curves in the quasi-molecules where the electron transfer takes place. This smooth variation, in contrast to that in ions with low charge where only few crossings play a role, can be understood from the fact that a number of the crossings closely located in a relatively narrow region of \(R_c\) contribute to one-electron transfer processes in ions with high charge.

1. Introduction

Presently much attention is being paid to the investigation of electron capture processes of highly ionised ions at low energies, particularly because these processes are found to play a key role in high temperature plasmas. A number of experimental (Winter 1982, Mann et al 1982, Phaneuf 1983, Bliman et al 1983, Yan et al 1983, Lennon et al 1983, Nielsen et al 1984) and theoretical (Greenland 1982, Lin 1982, Janev et al 1983, Gallagher et al 1983, Janev 1983) works have been reported. Because of the limited availability of ion sources capable of producing high charge state ions, most of the experiments made so far are concerned mainly with ions with charge \(q \leq 10\) and very few experimental results have been reported for ions with \(q \geq 10\) (Bliman et al 1981, Justiniano et al 1981, Groh et al 1983, Phaneuf 1983). Recently Justiniano et al (1984) have measured total cross sections for one-electron capture processes of Kr^{q+} and Xe^{q+} ions with \(q\) up to 14, which are produced in high energy heavy-ion impact, in collisions with He, Ne and Ar target atoms. It should also be noted that in most of these experimental works only total cross sections have been measured and again only a few results on the final-state distribution measurements have been reported so far (Ohtani 1984).

In order to understand the mechanism of electron transfer processes involving highly ionised ions, we are concentrating our effort on investigating the following

† Permanent address: Department of Liberal Arts, Kansai Medical University, Hirakata, Osaka 573, Japan.
‡ Permanent address: Department of Physics, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan.
§ Permanent address: Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan.
‖ Permanent address: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan.

0022-3700/85/020337 + 14$02.25 © 1985 The Institute of Physics 337
one-electron capture process by highly ionised ions \(A^{q+} \) from He atoms at low energies

\[
A^{q_+} + \text{He} \rightarrow A^{(q-1)+} + \text{He}^+ + \Delta E
\]

(1)

through measurements of total cross sections by observation of the charge-changed ions \(A^{(q-1)+} \) and of the final-state distribution and crossing radius \(R_c \) by observing the energy gain \(\Delta E \). \(R_c \) is determined through the following equation:

\[
R_c (\AA) = 14.4(q - 1)/\Delta E \text{ (eV)}
\]

(2)

where only the Coulomb repulsion is assumed to be important in the diabatic potential. A series of our recent works have been published for relatively light but highly ionised ions including the fully stripped ions such as \(\text{C}^6^+ \), \(\text{N}^7^+ \) and \(\text{O}^8^+ \) ions (Ohtani et al 1982, Tsurubuchi et al 1982, Kimura et al 1982, Okuno et al 1983, Matsumoto et al combinations (Huber 1983) and believed to be universal until recently. However, it was made clear that this is not true because this should be dependent on the charge of the ions as well as on the collision velocity (Tawara et al 1984, Kimura et al 1984).

Through these works it has been found that there are some distinct differences between electron capture processes of high-\(q \) ions and those of low-\(q \) ions in collisions with He atoms. For low-\(q \) ions, total cross sections show strong oscillation when plotted as a function of the charge of the ions, \(q \) (Iwai et al 1982). These results clearly indicate that the one-electron capture into few levels is a dominant mechanism which is supported with a single peak observed in the energy gain spectrum in most of the ions investigated. Also the cross sections, plotted as a function of the crossing radius determined from the energy gain \(\Delta E \), have a maximum at \(R_c = 3.5 \text{ Å} \) (Tawara et al 1984). This latter behaviour had previously been observed in various ion-atom combinations (Huber 1983) and believed to be universal until recently. However, it was made clear that this is not true because this should be dependent on the charge of the ions as well as on the collision velocity (Tawara et al 1984, Kimura et al 1984).

On the other hand, it was found that, for high-\(q \) ions, a number of crossings closely located in a relatively narrow region of \(R_c \) contribute to the electron transfer processes and, then, the total cross sections increase smoothly with increasing \(q \) and roughly with the square of \(R_c \) (Iwai et al 1984).

In the present work, following the previous work on \(\text{Kr}^{q+} \) ions (Iwai et al 1984), we report results of measurements on total one-electron capture cross sections and on crossing radii in collisions of \(\text{Kr}^+ \) ions with very high charge states (up to \(q = 41 \)) with He atoms. To our knowledge, this is the highest charge state ever to be investigated at low energies.

2. Experimental apparatus

The experimental set-up used in the present work is shown schematically in figure 1 and is practically the same as that described in detail in a previous publication (Okuno et al 1983). Hydrogen iodide (HI) gas up to about \(1 \times 10^{-9} \) Torr measured with an ionisation gauge is introduced into an electron beam ion source, \text{NICE-I}, whose base pressure is typically \(2 \times 10^{-10} \) Torr. A typical charge spectrum of \(\text{Kr}^+ \) ions produced in the impact of 9.1 mA, 3.6 keV electron beams at a pressure of \(8 \times 10^{-10} \) Torr is shown in figure 2. In addition to impurity ions such as \(\text{C}^6^+ \), \(\text{N}^7^+ \) and \(\text{O}^8^+ \), very highly ionised \(\text{Kr}^+ \) ions up to \(q = 42 \) are clearly seen. A weak trace of \(\text{Kr}^{43}^+ \) ions is also observed on the tail of a big peak of \(m/q = 3 \) ions in an expanded scale. In fact since the ionisation potential of \(\text{Kr}^{42}^+ \) (i.e., \(\text{Kr}^{42}^+ \rightarrow \text{Kr}^{43}^+ + e \)) is 3.2 keV (Carlson et al 1971), \(\text{Kr}^{43}^+ \) ions is the
highest charge state of iodine ions which can be produced by 3.6 keV electron beams. It is noticed in this ion charge spectrum that the charge distribution changes significantly at $q = 25$ because of the drastic change in the ionisation potential of ions at $q = 25$. I$^{25+}$ ($Z = 53$) ions have the electron configuration of all O- and N-shell electrons ionised and only K-, L- and M-shell electrons left un-ionised. From this result, it is found that one of the keys relevant to producing such high charge ions is vacuum itself in the ion source which should be as low as 1×10^{-9} Torr. The ion beam intensities used are typically a few to ten thousands of counts per second, except for those in highest charge states which are about one thousand counts per second.

In the present work a new system for measuring total electron capture cross sections is introduced which is retractable when the energy gain spectrum needs to be measured. This retractable system, shown in an insert of figure 1, consists of four meshed
electrodes, each having 90% transparency, and an ion detection system. The first mesh is grounded and on the second and third meshes, connected together, is applied the retarding positive voltage \(V_r \). The ions retarded between the first and second meshes are accelerated through the fourth mesh at \(-2\) kV and detected with a multichannel plate (MCP). The fourth mesh also serves as a reflector of secondary electrons produced at the surface of MCP. It should be noted that, in principle, no electron originating in these meshes can reach the MCP in the present configuration. By applying the retarding voltage on the retarding meshes, the variation of the number of ions arriving at the MCP is observed as shown in figure 3(a). The first flat part (on the left) of the intensity variation corresponds to the intensity of primary \(\text{A}^{q+} \) ions and the second flat part to that of the product (charge changed) \(\text{A}^{(q-1)+} \) and \(\text{A}^{(q-2)+} \) ions. Also seen in figure 3(a) is the third weak flat part corresponding to the double charge changed \(\text{A}^{(q-2)+} \) ions which is confirmed to be produced through two-step processes. It is found that the third flat part due to double charge changed ions is negligibly small, compared with that due to single charge changed ions, at the pressure range investigated in the present

![Figure 3](image-url)

Figure 3. (a) Ion intensity variation as a function of the retarding voltage \(V_r \) in \(\text{I}^{25+} + \text{He} \) collisions. The accelerating voltage is 2.25 kV. The flat part on the left corresponds to intensity of primary \(\text{I}^{25+} \) ions while the flat part in the middle to that of the charge changed \(\text{I}^{24+} \) and \(\text{I}^{23+} \) ions and the flat part on the right to that of the double charge changed \(\text{I}^{21+} \) ions which are produced through a two-step process. The arrow indicates the retarding voltage \(V_r \) where the growth curve (b) is obtained. (b) Growth curve of \(\text{I}^{24+} \) ions as a function of He target density.
work. To determine the growth rate of the product ions, the retarding voltage is fixed at the middle of the second flat part (shown by arrow). Then the growth curve of the product ions is obtained as a function of the target gas pressure shown in figure 3(b). From this growth curve, total one-electron capture cross sections are determined in the usual ways. It is confirmed that the cross sections determined in the present set up are in good agreement with our previous results (Iwai et al 1982) for O7+, O6+ + He and N6+ + He collisions. Most of the experimental errors in the cross section measurements come from instabilities of the primary ions, determination of the slope of the growth rate curve and the target thickness determination. Total errors for the absolute values of the cross sections are estimated to be \(\pm 30\%\).

The energy gain spectra of Iq+ ions \((q = 13, 19, 27\) and 34) at forward directions in collisions with He atoms at the energy of 1.25\(q\) keV are shown in figure 4. A detailed description of this energy gain spectrometer was given previously (Okuno et al 1983). The strong peaks in these energy gain spectra, which are only slightly broader than those of primary ions, are due to the one-electron capture processes of the incident Iq+ ions and the second weak peaks (shoulders) at higher energy gain, though not well separated from the main peaks because of the limited energy resolution of the present

![Figure 4. Energy gain spectra for Iq+ + He collisions (\(q = 13, 19, 27\) and 34). Strong peaks correspond to the one-electron capture process whereas weak peaks on the right probably to the transfer ionisation process (see the text).](image-url)
system, are believed to be due to indirect processes such as the transfer ionisation (see discussion later on). In this figure, the crossing radii determined are also shown. Uncertainties in the energy gain ΔE are estimated to be $\pm 15\%$ (Iwai et al 1984).

3. Experimental results

The measured total cross sections and the crossing radii for one-electron capture in $\text{I}^{q^+}+\text{He}$ collisions are summarised in table 1(a) and also those in $\text{Kr}^{q^+}+\text{He}$ are in table 1(b).

3.1. Total one-electron capture cross section

3.1.1. Energy dependence. The energy dependence of total cross sections for one-electron capture processes in $\text{I}^{q^+}+\text{He}$ collisions is shown in figure 5 for ions with $q = 10, 15, 20, 25$ and 30. As expected, the variation of cross sections with the collision energy is small and it can be assumed that the cross sections are constant over the energy range investigated in the present work, namely, $0.75q-2.25q$ keV. In the following, all the cross sections and crossing radius R_c are referred to at $1.25q$ keV.

3.1.2. Charge dependence. The present results on total cross sections of one-electron capture processes for $\text{I}^{q^+}+\text{He}$ collisions are shown in figure 6 as a function of the charge of the incident ion q. Also for Kr^{q^+} ions our experimental results ($q \leq 25$) (Iwai et al 1984) and those by Cocke et al (1981) ($q \leq 10$), Kusakabe et al (1983) ($q = 9$) and Justiniano et al (1984) ($q \leq 14$) are shown together. All these results for different ions seem to lie on a single curve, although they are scattered. Below $q = 10$, the oscillation of the cross sections is clearly seen. In particular, the dips at $q = 2$ and 4 are significant. These dips can be understood in a way similar to those observed for light ions such as C, N, O and Ne, which had been discussed in detail previously (Iwai et al 1982, Tawara et al 1984, Kimura et al 1984). On the other hand, data for ions with $q > 10$ increase relatively smoothly with increasing charge of ions q. Some structure

![Figure 5. Energy dependence of cross sections for the one-electron capture process in $\text{I}^{q^+}+\text{He}$ collisions ($q = 10, 15, 20, 25$ and 30). Total energy is represented by qE_{acc}.](image-url)
Figure 6. Cross sections for the one-electron capture process as a function of the charge q of ions: \bigcirc, in $^{1}{}^{9+}$ + He collisions at the energy 1.25q keV; \bigcirc, Kr$^{q+}$ (Iwai et al 1984); \square, Kr$^{q+}$ (Kusakabe et al 1983); \triangle, Kr$^{q+}$ (Cocke et al 1981); \triangledown, Kr$^{q+}$ (Justiniano et al 1984); $+$, the MCLZ model calculation; $-$, empirical formula of Muller and Salzborn (1977).

around $q = 25 - 35$ is seen in these data. Although we have no clear understanding of these structures at present, we suppose these are caused by different mechanisms from those observed in low q ions.

In figure 6 calculated cross sections (broken curve) based on an empirical formula proposed by Müller and Salzborn (1977) are also shown. Except for those with low q, this empirical formula ($\sigma_{q,q-1} = 2.07 \times 10^{-16} q^{1.17}$ (cm2) for He) can reproduce these experimental results. This is somewhat surprising because this formula was derived from a number of experimental data for ions with $q \leq 10$.

Though a number of calculations of cross sections for electron capture processes in collisions between highly ionised ions and atomic hydrogen were made based on different approximations (Greenland 1982, Janev et al 1983), they are concerned mainly with those for ions with $q \leq 10$. Very few theoretical calculations of these cross sections for ions with $q \geq 10$ in collisions with He atoms have been reported (Suzuki et al 1984).

3.2. Energy gain measurements

3.2.1. Crossing radius R_c. The observed spectra of the energy gain, as shown in figure 4, seem not to differ very much for different $^{1}{}^{9+}$ ions over the charge states $41 \geq q \geq 10$. However, the shift of these peak positions toward smaller $\Delta E/q$ with increasing charge of the primary ions, q, is clearly observed. It should be noted that the energy resolution
of the present energy gain spectrometer is not good enough to separate possible peaks contributing to the observed peaks which correspond to the average energy gain spectra over a number of the capturing levels of ions. From the observed energy gain ΔE, the crossing radius R_c in quasi-molecules where the electron capture takes place is determined by equation (2). For high q ions the polarisation effect should become important. However, this effect is neglected in the present analysis. However, as seen in the present results the crossing radii for high-q ions are generally large. Thus the polarisation effect can be assumed to be minor. Therefore this polarisation is neglected in the present analysis.

The crossing radius R_c has been found to increase with the charge of primary ions q. The cross sections for I^{q+} ions are shown in figure 7 as a function of the crossing radius R_c thus determined, together with the previous data of Kr^{q+} ions. Though data are scattered, the cross sections increase roughly with the square of the crossing radius R_c, that is $\sigma_{q, q-1} \propto R_c^2$. It should be noted that almost all the observed cross sections lie between the geometrical cross section πR_c^2 and the classical cross sections $\frac{1}{2} \pi R_c^2$. This behaviour indicates that the classical picture of one-electron capture processes prevails for the ions with very high charge state investigated in the present work. As discussed previously, this smooth behaviour of the cross sections for ions with high charge as a function of R_c is quite in contrast with that for ions with charge less than 10. This difference can be understood from the fact that the cross sections for high-q ions increase with increasing R_c because there is not a single crossing but a number of densely populated crossings at large crossing distances which contribute to one-electron capture processes, though they are not separable in the present work, whereas those for low-q ions are dominated by few crossings (Kimura et al 1984).
3.2.2. Electron-capturing level. As mentioned before, no accurate information is available on the energy levels of 1^+ ions with such very high charge. Therefore, it is not possible to accurately determine the levels where the electron of the He atom is captured in collisions. However, in such highly ionised heavy ions their energy level structure can be assumed to be hydrogenic and the energy of their excited states is given by $13.6q^2/n^{*2}$, n^{*} being the effective principal quantum number of the excited level. Thus, using the observed energy gain ΔE and the known ionisation potential of target atom V_i, n^{*} of the electron capturing level can be determined through the following relation:

$$\Delta E = 13.6q^2/n^{*2} - V_i$$ \hspace{1cm} (3)

where ΔE and V_i are given in units of eV. In the present case, $V_i = 24.59$ eV for He atoms.

Typical correlations between the energy levels and observed energy gain spectra are shown in figure 8(a) and (b) for $I^{13+} + He \rightarrow I^{12+}$ and $I^{35+} + He \rightarrow I^{34+}$ processes, respectively. These energy levels are calculated by assuming only the Coulomb interaction between the product ions, namely $I^{(q-1)+}$ and He*. Clearly, the electron is captured mainly into the $n^{*} = 6$ state for $q = 13$ ions, whereas that for $q = 35$ ions is captured into the $n^{*} = 14$ state. Note that the electron is captured into the fairly narrow region of n^{*} of the ions. This fact is also noted in the energy gain spectra shown in figure 4 where the widths of the product ions are only slightly broader than those of the primary ions, indicating that a limited number of the levels contribute to the one-electron capture process. Also the energy diagrams corresponding to double electron capture processes are shown (by dotted curves) in figure 8. Stronger Coulomb interaction between $I^{(q-2)+}$ and He$^{2+}$ ions results in sharp variation of the potential energy curves which often cross those corresponding to single electron capture processes. As seen in figure 8, the shoulders at higher energy gain may correspond to two electron capture processes into the autoionising states (transfer ionisation) which, followed by one-electron emission, result in the same charge state as that in single electron capture (Tsurubuchi et al 1982). Unfortunately no information is available

![Figure 8](image-url)}
presently on the autoionising states of such highly ionised I ions. As discussed by several investigators (for example, Kamber and Hasted 1983), it is known that the energy gain spectra depend significantly on the scattering angle. However, the present energy gain spectra are obtained in a very forward direction of scattering. Therefore, processes other than the transfer ionisation can be responsible for the observed shoulder at higher energy gain.

In figure 9 the average quantum number n^* of the electron capturing levels is shown as a function of the charge of primary ions q. With increasing q, the principal quantum number n^* of the electron-capturing level becomes large, showing that the electron is captured into a higher quantum state ranging from $n^* = 5$ for $q = 10$ to $n^* = 15$ for $q = 40$.

It is also possible to estimate the principal quantum number n based on the classical model for electron transfer described previously (Ryufuku et al 1980, Iwai et al 1982). In the present work, the high Rydberg states are found to be responsible in the electron capture in highly ionised ions and, therefore, the effective charge of the core nucleus can be assumed to be equal to the real charge of ions; $Z' = q$. The results estimated in this way are shown in figure 9 by a full curve. These results are in agreement within $\Delta n^* = \pm 1$ with those determined from the observed energy gain, indicating that the classical model is valid in estimating the electron-capturing levels in very highly ionised ion collisions. Asymptotically the following classical formula is obtained for large q:

$$n^* = \sqrt{2(q/Z_2)}^{0.75}$$

where Z_2 is the effective charge of target atom, meanwhile the experimental data fit for He by

$$n^* = 0.76q^{0.818}.$$ \hspace{1cm} (5)

3.2.3. Multichannel Landau-Zener model calculation. As demonstrated previously, the multichannel Landau-Zener (MCLZ) model is quite useful in understanding the one-electron capture processes involving highly ionised heavy ions in collisions with He atoms at low energies (Kimura et al 1984). For $I^q^+ + \text{He}$ collisions, we have also tried

![Figure 9. Average principal quantum number n of the electron capturing level as a function of the charge of ions q in $I^q^+ + \text{He} \rightarrow I^{q-1}\ell^+(n^*) + \text{He}^+$ processes. The full curve represents the classical estimation.](image)
to reproduce the observed results using the MCLZ model. The calculated results of partial cross sections of one-electron capture in $I^{q+} + \text{He}$ collisions for $q = 20, 30, 35$ and 40 are summarised in table 2. In the present calculation, the following assumptions are made as they were in the previous work: (i) the energy levels are represented to be hydrogenic, (ii) each state of the principal quantum number n has n sublevels, (iii) no interference among the neighbouring crossings takes place and (iv) the transfer ionisation processes are neglected. Roughly 100 levels are taken into account in the calculation. These calculations are found to be in good agreement with the observed results as far as the electron capturing levels are concerned. For I^{35+} ions, the principal quantum number n^* of the electron capturing states which contribute most to one-electron capture processes is calculated to be $n^* = 14$, in agreement with the experimental result shown in figure 8(b). In all the cases, the calculated results on the electron capturing level reproduce the observed results quite well.

However, it should be noted that some discrepancies exist in total cross sections for one-electron capture processes (see tables 1 and 2). One of the important origins for these discrepancies might be the effective number of the sublevels which is assumed to be equal to the principal quantum number n^*. The overestimation of cross sections suggests that the number of the levels actually contributing to electron transfer is

<table>
<thead>
<tr>
<th>q</th>
<th>0.75 kV</th>
<th>1.25 kV</th>
<th>1.75 kV</th>
<th>2.25 kV</th>
<th>R_e (Å)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.56</td>
<td>4.25</td>
<td>4.25</td>
<td>3.88</td>
<td>3.81</td>
</tr>
<tr>
<td>13</td>
<td>5.70</td>
<td></td>
<td></td>
<td></td>
<td>4.31</td>
</tr>
<tr>
<td>14</td>
<td>6.65</td>
<td></td>
<td></td>
<td></td>
<td>4.75</td>
</tr>
<tr>
<td>15</td>
<td>6.20</td>
<td>6.45</td>
<td>6.60</td>
<td>7.33</td>
<td>5.01</td>
</tr>
<tr>
<td>17</td>
<td>6.92</td>
<td></td>
<td></td>
<td></td>
<td>5.18</td>
</tr>
<tr>
<td>19</td>
<td>8.16</td>
<td></td>
<td></td>
<td></td>
<td>5.05</td>
</tr>
<tr>
<td>20</td>
<td>8.48</td>
<td>8.74</td>
<td>7.98</td>
<td>7.78</td>
<td>5.20</td>
</tr>
<tr>
<td>22</td>
<td>9.53</td>
<td></td>
<td></td>
<td></td>
<td>5.06</td>
</tr>
<tr>
<td>23</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td>6.68</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.72</td>
</tr>
<tr>
<td>25</td>
<td>10.2</td>
<td>10.3</td>
<td>9.98</td>
<td>10.1</td>
<td>6.31</td>
</tr>
<tr>
<td>26</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td>5.69</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.69</td>
</tr>
<tr>
<td>28</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td>5.84</td>
</tr>
<tr>
<td>29</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>30</td>
<td>12.3</td>
<td>10.6</td>
<td>11.7</td>
<td>11.7</td>
<td>6.08</td>
</tr>
<tr>
<td>31</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
<td>6.40</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.04</td>
</tr>
<tr>
<td>33</td>
<td>12.7</td>
<td></td>
<td></td>
<td></td>
<td>5.95</td>
</tr>
<tr>
<td>34</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td>7.20</td>
</tr>
<tr>
<td>35</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td>8.16</td>
</tr>
<tr>
<td>36</td>
<td>16.6</td>
<td></td>
<td></td>
<td></td>
<td>9.27</td>
</tr>
<tr>
<td>37</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td>8.22</td>
</tr>
<tr>
<td>38</td>
<td>18.9</td>
<td></td>
<td></td>
<td></td>
<td>7.89</td>
</tr>
<tr>
<td>40</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
smaller than assumed or the coupling potential has the l dependence or the interference among the neighbouring crossings is not negligible. A part of these discrepancies is also believed to be due to the fact that the observed results include not only one-electron capture processes but also contribution from indirect processes like transfer ionisation processes which is clearly indicated in figure 4 to be significant in such highly ionised ion + He collisions, whereas the calculation is purely due to the one-electron capture processes. In fact, contribution of the indirect process is estimated to amount to 15–20% in $1^+ +$ He collisions, being enhanced with increasing the charge of ions q (see figure 4). To clarify this contribution more experiments are needed such as the scattering angle dependence of the energy gain spectra and ejected electron spectroscopy and also accurate information on the energy levels of such highly ionised ions.

Table 2. Calculated partial cross sections for one-electron capture in $1^+ +$ He collisions at an energy of 1.25qk eV using the MCLZ model. The numbers on the extreme right show experimental values.

<table>
<thead>
<tr>
<th>q</th>
<th>n = 6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>Total</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.06</td>
<td>23.0</td>
<td>68.1</td>
<td>9.0</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.1</td>
<td>87.5</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>20.6</td>
<td>81.2</td>
<td>59.2</td>
<td>1.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>174.9</td>
<td>106</td>
</tr>
<tr>
<td>35</td>
<td>0.05</td>
<td>5.87</td>
<td>53.4</td>
<td>88.5</td>
<td>4.8</td>
<td>10.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>206.5</td>
<td>117</td>
</tr>
<tr>
<td>40</td>
<td>1.7</td>
<td>27.3</td>
<td>83.7</td>
<td>83.1</td>
<td>37.6</td>
<td>9.0</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>243.9</td>
<td>18^</td>
</tr>
</tbody>
</table>

† Errors ±30% (see Iwai et al. 1982).
‡ Errors ±15% (see Iwai et al. 1984).
4. Summary

In the present work we have demonstrated that our EBIS, NICE-I, with a relatively weak, continuous electron beam of 10 mA can produce 1^+ ions with the charge as high as $q = 41$ whose intensity is high enough to work on energy gain spectroscopy and found that one of the keys relevant to producing such high charge ions is vacuum in the ion source. Using these ions we have measured total cross sections for one-electron capture processes in 1^++He collisions at energies ranging from 0.75q to 2.25q keV and found they are nearly constant over the energy range investigated. In contrast to results for ions with low charge where significant oscillations are observed (Iwai et al 1982), these cross sections have been found to increase smoothly with the charge of the ions, agreeing with an empirical formula, and to increase with the square of crossing radius.

It should be noted that the observed energy gain spectra are only slightly broader than those of the incident ions, indicating that the electron is captured into the Rydberg states in a relatively narrow region of the principal quantum number n^*. This means that the electronic states with a limited number of the principal quantum number n are involved in one-electron capture process, though there should be a number of states closely spaced available. It should also be noted that, for He target atoms, the indirect processes like the transfer ionisation processes contribute significantly to one-electron capture processes in such highly ionised ion collisions.

It has also been found that there is a distinct similarity in both the size of cross sections and the electron capturing levels for the same q of ions irrespective of the nuclear charge of ions when the ion charge q is very high, as found in low q ions by Okuno et al (1983). Then, the ions can be treated as fully ionised in the electron capture processes. Therefore, based on the present results, some predictions such as the cross sections and electron capturing levels of electron capture processes can be made in collisions of He atoms with highly ionised metal ions like Fe, Mo, W, etc, which are most important in nuclear fusion researches.

Acknowledgments

This work was carried out as a part of the Guest Research Program at the Institute of Plasma Physics, Nagoya University. The authors are grateful to Professor H Kakihana, the Director of the Institute, and Professor Emeritus K Takayama, the former Director of the Institute, for their encouragement throughout the present work.

References

Huber B A 1983 Phys. Scr. T 396
H Tawara et al

Muller A and Salzborn E 1977 Phys. Lett. 62A 391
Winter H 1982 Comment. At. Mol. Phys. 12 165
電子ビームイオン源用
水平設置超伝導コイルおよび
クライオスタットの製作

小林信夫、大谷俊秀、金子洋三郎
岩井鶴二、奥野和彦、鶴沼誠一
木村正広、佐博之、日野利彦

名古屋大学プラズマ研究所・客員共同研究グループ

IPPJ-DT-84 1981年3月 (1980年2月17日受理)

NICE Group for the Guest and Visiting Research Program
Institute of Plasma Physics
Nagoya University

Abstract

An electron beam ion source nicknamed NICE-I (Naked Ion Collision Experiments) has been constructed at IPP for studies of atomic processes in fusion plasmas. A super conducting magnet is adopted to generate a strong, stable and homogenous magnetic field to compress a high density electron beam. The solenoid is 1 m long, the inner diameter is 100 mm and the maximum magnetic field is 2T. It is placed horizontally and coaxially with a liquid nitrogen (L-N\textsubscript{2}) reservoir and a vacuum vessel. In order to fix their axes inmovable even when the reservoirs are cooled by L-N\textsubscript{2} and He, a structure having spokes strained uniformly like a wheel is used between the vacuum vessel and the L-N\textsubscript{2} reservoir and also between the L-N\textsubscript{2} reservoir and the solenoid bore. The electrodes, such as the electron gun, the drift tubes and so on, are mounted on the radiation shields fixed on the L-N\textsubscript{2} reservoir, and they are centered to the solenoid bore within the precision of 0.1 mm.

The evaporation rate of L-He is about 1.4 \textsubscript{L}/h, which is not so much larger than the estimated value. This provides a continuous operation for 16 hours with a charge of 50 \textsubscript{L} of L-He including the precooling of the reservoir. The ultimate pressure 4\times10^{-10} Torr is achieved in the vacuum vessel, and the residual gas pressure in the ionization region is expected to be much lower than 1\times10^{-10} Torr. The consideration for mechanical strength and the heat conduction of the materials related to the design are described as well as the details of the structure.

Further communication about this report is to be sent to the Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya 464 Japan.
目次

1. はじめに .. 1
2. Cryo-NICE の概要 ... 2
3. コイル用線材の選択 ... 4
4. コイルポビン及び液体ヘリウム溜 .. 5
5. クライオスタット ... 9
 5.1 クライオスタットの構造 .. 9
 5.2 輻射シールド ... 10
 A. 液体窒素溜 ... 10
 B. 輻射シールド板 .. 13
 5.3 液体ヘリウム溜くびの構造 .. 14
 5.4 真空槽 ... 17
6. スポークを用いた超伝導コイルの固定 .. 17
 6.1 低温用材料 ... 17
 6.2 スポークによる超伝導コイルの懸下 .. 21
 A. 真空槽から液体窒素溜の懸下 ... 22
 B. 液体ヘリウム溜の固定 .. 23
 a. スポークによる懸下 ... 23
 b. 細いステンレス線を用いた補強 ... 24
 c. ガラス棒によるコイル一磁気シールド間の補強 24
7. 寒剤の消費量 .. 26
 7.1 寒剤の性質 ... 26
 7.2 予冷による寒剤の消費 ... 26
 7.3 熱流入による寒剤の消費 .. 29
 A. 液体窒素溜への熱流入 ... 30
 B. 液体ヘリウム溜への熱流入 .. 30
8. おわりに .. 33
1. はじめに

我々は Naked Ion Collision Experiment（略して NICE）計画用の多価イオン源として、超伝導コイルを使用した Electron Beam Ion Source (EBIS) 型イオン源（我々は Cryo-NICE と呼んでいる）の製作を行った。EBIS 型イオン源の原理は、電場をせきとし、生成された超伝導コイルを用いた電子ビームで原子や分子を電離し、生成したイオンを電子の空間電荷と軸方向にかけられた電位障壁によって閉じ込め、次いで電場を生成するものである。したがって EBIS 型イオン源の製作においては、高密度電子ビームの発散を防ぐために比較的均一な電場の発生と同時に、イオン化領域を 10^{-10} Torr 以下の超高真空にして、残留ガスのイオン化によって空間電荷が中和されないようにすることが必要である。

この要求にこたえるものとしては超伝導コイルの利用が考えられる。超伝導コイルは空心コイルに比較して小型で均一性が高い。高密度電子ビームを液体ヘリウムに浸して使用するので、コイルを収納するヘリウム渦の表面はクライオポンプとして利用される。このような利点から超伝導コイルを使用した EBIS 型イオン源がすでに実用化されている。ただし、極低温を用いるものであるから、製作及び取扱い上のやさしい問題もある。我々は Cryo-NICE の建設にあたって、超伝導コイルを用いた場合の得失について検討を行い使用に踏み切った。その最大の理由は、イオン化領域が、軸方向に電位をかけるための移動管（Drift Tube）と呼ばれる細い管に包まれており、この内部が超高真空に保つことが必要である。超伝導コイルを用いた移動管を設置すればポビン表面はクライオポンプとして大きな排気速度をもっているから、移動管内を超高真空に保つことは容易である。さらに EBIS 型イオン源の特徴はパルス動作にある。パルス的に導入された気体から生じたイオンをイオン化領域内で閉じ込め、価数が上がった電子ビームで空間電荷が中和された時点で、軸方向に電位障壁を取り払ってイオンを引き出した時に多価イオン生成効率は最も高い。したがってガス導入については、イオンの閉じ込め時間に比べてパルス幅を十分短くかつ立上がり、立下り時間の短い中性ガス入射が要求され、ガス噴射口附近では排気速度の大きなポンプが必要になる。この点でも超伝導コイルを利用することの利点は大きい。

Cryo-NICE で採用した超伝導コイルはコイル長 10 m、ポビン全長 1070 mm、ポビン内径 100 mm の円筒形で、実験の都合上水平に設置されている。超伝導コイル及びクライオスタットの製作についてはすでに多くの解説がなされている。現在では超伝導電極の内径も容易に入手するようになって小型のコイルであれば手造りも可能である。このコイルをガラス製の液体ヘリウム容器中に浸して使用すれば、数十 kG の磁場は容易に発生させることができる。しかし、超伝導コイルが物性実験と共に進歩したものであるために、解説の多くは物性実験家を対象としている。コイルはたてに設置する方が容易であり、物性実験用としてはそれぞれ分離されるからまった型設置が基本になっている。Cryo-NICE 用の 10 m のコイルは大型の部類に入り、かつ
それを行うための電気設置においては多少の工夫が必要であった。

Cryo-NICE の特性その他の内容は別に報告することにして、
この報文では低温装置としての Cryo-NICE の建設そのその建設に関する学んだことについて報告する。

2. Cryo-NICEの概要

Cryo-NICE の概念図を図に示す。電子線から引き出される電子ビーム
は、このコイルによって発生する磁場でしばられ、移動管にそったイオン化領域を通過した後、
電子ビームコレクターに到達する。コレクターの前開には、軟鉄および不純物からなる磁気
シールドが設けられ、ビームは発散してコレクターに捕集される。電位差装置を取り除かれた
ように流れ出たイオンは、コレクター後部にあるイオン引き出し電極のポテンショナルによって引き出され、レンズ系で収束した後質量分析器される。したがって、イオン
ソースを構成する電子線、移動管、磁気シールド、コレクター、イオンレンズ系及び質量分析
器は磁場（コイル）の中心軸と同軸に設置されていないばならない。特に電子ビームとコイル
により発生する磁場中心の軸方向には高い精度が要求される。

通常超伝導コイル用クライオスタットでは、コイルを収納している液体ヘリウム浴は構造
材による熱伝導を可能な限り小さくするために、液移送口、電流導入口を兼ねた数本の肉薄パ
イプによって懸下されている。このような場合構造材として使用されている金属が冷却によっ
て収縮するために、コイルの位置は室温時と冷蔵時に比べて数 mm も移動してしまう。Cryo-NICE

NICE 全体

-166-
の場合、イオンソース構成部品をコイルボビンに固定出来れば、組合せは容易であり、イオンをレンズ系を用いて質量分析器に導くことも可能である。しかし、高周波の発熱体を極低温で動作させるコイルボビンに直接固定することは危険でもあり容易ではない。それ故我々は電子管をはじめとするイオンソース構成部品は全て1図にR.Sで示された液体窒素温度の幅射シールド板に固定し、かつコイル構成を幅射シールドの軸は冷却時においても室温で設定した位置と0.1mm以内の精度で一致させることが目標に設計を行った。そこで、上記のような一方向の収縮による移動をさせるため、コイルボビン、液体窒素溜、真空管を同軸円筒形にし、ボビンと液体窒素溜、液体窒素溜と真空槽間を各々等方的に張ったスポークによって懸下する方式を採用した。又コイル近傍に強磁性体が設置されるので、クライオスタットの機械的強度についても検討を行い磁気シールドとの間に働く引力にも耐え得る構造とした。

![Cryo-NICE概念図](image)

1 図 Cryo-NICE概念図

<table>
<thead>
<tr>
<th>K</th>
<th>カソード</th>
<th>A</th>
<th>アノード</th>
<th>S.C.M.</th>
<th>超伝導マグネット</th>
<th>D.T.</th>
<th>移動管</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S.</td>
<td>磁場シールド</td>
<td>E.C.</td>
<td>電子ビームコレクター</td>
<td>G.C.L.</td>
<td>ガスクールリード</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>液送送パイプ</td>
<td>R.S.</td>
<td>無反射シールド板</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>電子線</th>
<th>Semi-immersed flow方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>カソード</td>
<td>BaO 3mmφ</td>
</tr>
<tr>
<td>電子加速電源</td>
<td>10kV 2A</td>
</tr>
<tr>
<td>移動長</td>
<td>1000mm</td>
</tr>
<tr>
<td>超伝導コイル線材</td>
<td>NbTi</td>
</tr>
<tr>
<td>磁場強度</td>
<td>20kG/90A永電流方式</td>
</tr>
<tr>
<td>コイルボビン内径</td>
<td>100mmφ</td>
</tr>
<tr>
<td>ボビン全長</td>
<td>1070mm</td>
</tr>
<tr>
<td>液体窒素溜体積</td>
<td>23ln</td>
</tr>
<tr>
<td>液体ヘリウム溜体積</td>
<td>33ln</td>
</tr>
</tbody>
</table>
3. コイル用線材の選択

超伝導コイルの最大の利点は、いうまでもなく電気抵抗がゼロであるために電力消費がなく、かつ通常の空芯コイルに比較してはるかに小型化出来ることにある。永久電流方式で使用した場合、電源変動の影響を受けないから非常に安定度の高い磁場が得られる。現在では良い線材が開発されており、60 kG までは合金系の NbTi と、それ以上 200 kG 程度までは金属間化合物の Nb₃Sn を使用して比較的容易に高磁場を発生させることができる。

Cryo-NICE の 20 kG の発生は超伝導コイルにとっては強磁場であってコイル製作上の問題はほとんどない。ただ超伝導コイルはクエンチして、超伝導状態がやぶれてノーマル状態におちることがある。我々のような未経験者にとって、大きなエネルギーを貯えているコイルがクエンチした状態というのは想像もし難い大変恐ろしいことのように思われる。そしてCryo-NICE 運転中にクエンチ電子ビームは発散し、コイルのみならずイオンソース全体が破壊されてしまうのではないかといわれることがある。事実過去には NbTi 線には低温不安定性とよばれる現象があって使用かそうそう変わって、training 効果といわれる所定の磁場まで励磁してゆく際に数回のクエンチを経験するというようなことがあったようである。その後数百本の細い線材を束ねた multi core wire にして線材の信頼度が向上するとともに、これに鋼被覆をほどこして①線材の冷却効果を上げる、②局部的にノーマル状態において電流を鋼にパイパスさせて超伝導線の温度上昇を防ぐ、③急激な磁束の変化が生じたとき鋼中に過電流が流れ速和する等の改良がされ、現在では安定な線材が容易に入手出来るようになった。

クエンチの原因としては大まかにいって次のようことが考えられる。① コイル自身の発生する強磁場中で機械的・磁気的相互作用によってコイルが移動する。② コイル電流にパルスが入る。巻線後最初の励磁の際には、巻線のわずかな毛があっただけでクエンチする場合があるがその後は安定するものである。Cryo-NICE のような低磁場用コイルではそのようなことはおこらないであろうとの予想であったが、幸にも我々はクエンチを経験しなかった。強磁場用コイルの場合でも線材をエポキシ樹脂でかためたり、鋼被覆を厚くする等によってクエンチを防ぐことが可能である。

超伝導線には線材固有のパラメーターとして、超伝導状態になる温度 Tc とその線材で発生し得る最大磁場 Hc が決まっている。線材に垂直に磁場をかけた状態で、その線材に流し得る最大電流容量 Ic を臨界電流という。Ic は磁場の強さの関数となっていて、各種線材によっても異なる。低磁場で Ic は大きく、磁場が強くなると共に減少し Hc でゼロになる。

Cryo-NICE のような 20 kG 程度の低磁場用の場合には、励磁電流を大きくしてコイルの巻数を少なくした方が製作費は安上がりで、かつコイルのインダクタンスも小さくなって取り扱い易い。Cryo-NICE では Ic が大きく、同時にクエンチしにくい線材ということで鋼被覆率の比較的高い線材を選択した。実際に使用した線材は I.G.C.社の CRYOSTRAND-Ti で、その定格およびコイル仕様を表 2 に示す。表に示された 50 kG における Ic の値は短線の場合の値であっ
て、コイルにした時にはこの値より低くなる。それにもしても 20kG の励磁に対しては十分余裕をもっており、励磁電流を大きくすればさらに高磁場の発生が可能である。

表 2 Cryo-NICE 用超伝導コイルの概要

<table>
<thead>
<tr>
<th>線材</th>
<th>L.G.C. 社 CRYOSTRAND-Ti</th>
<th>ホルマル加工</th>
</tr>
</thead>
<tbody>
<tr>
<td>直径</td>
<td>0.677 mmφ</td>
<td></td>
</tr>
<tr>
<td>繊条数</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Cu/Nb-Ti 比</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>電流 型 領</td>
<td>160 A （50 kG において）ただし個線において</td>
<td></td>
</tr>
<tr>
<td>枝 場 均 一 度</td>
<td>2.5 x 10^-4 at 100 D.S.V.</td>
<td></td>
</tr>
<tr>
<td>線材全長</td>
<td>7,102 m</td>
<td></td>
</tr>
<tr>
<td>自己インダクタンス</td>
<td>4.6 ヘンリー</td>
<td></td>
</tr>
<tr>
<td>電 流 導 入</td>
<td>ガスタールリード</td>
<td></td>
</tr>
<tr>
<td>電 源 定 格</td>
<td>100 A 4V</td>
<td></td>
</tr>
<tr>
<td>電流 排 引 率</td>
<td>100 A/10 min. (0-60 A) 100 A/25 min. (60-90 A)</td>
<td></td>
</tr>
</tbody>
</table>

4. ポビン及び液体ヘリウム溜り

物性実験などで使用される小型の超伝導マグネットの場合には、ポビンを巻線し、液体ヘリウムデューサー中にそのまま浸し使用される場合もある。ポビン材としては冷却時の収縮が線材のそれとあまり異ならなければ何を使用してもよい。アルミ合金、真鍮、銅、ステンレス等が使用されるが、その中でもマグネットの軽量化のためにアルミ合金が多く使用される。

Cryo-NICE ではポビンの内側は超高真空で、その中心をビームが通るのでポビンは液体ヘリウム溜りの一部をなしている。ポビンに巻線後両端フランジ部と溜との溶接を行う。それで、ポビン、溜ともに溶接が容易なステンレスを使用することにした。ステンレスとしては SUS 304 が入手しやすいが、切削加工後わずかではあるが磁化率の増大がみられる。

我々は、多少高価ではあるがそのような現象が少なく又溶接性も優れている SUS310・S を使用した。

ポビンは線巻の際 コイル端の処理及び線材の継ぎ処理を行うためにコイル両端に 20〜30 mm
のスペースを取る。Cryo-NICEの場合ボビン全長はコイル長1000mmにこのスペースとフラ
ンジ厚を加えて1070mmとなった。このように長いボビンにステンレス鋼を使用した場合、か
なりの重量となるので少しでも肉厚を薄くしたいところである。しかしある程度の肉厚がない
とボビンは自重及び線材の重みでたわむ。又、巻線の際には、前章で述べたような励磁中にお
こる線の動きをおさえるために、数kgの張力をかけて巻くので線材の張力によってボビン径は
収縮する。Cryo-NICEの場合、特に前者のボビンのたわみは軸力線のたわみとなって直進する
ビームの不安定性の原因となりかねない。このたわみがどの程度まで許容されるかについては
は明確な判断は出来ないが、ビームと磁場中心を0.1mmの精度で一致させるという目標値か
らして0.02mmにおさえることにした。その結果ボビンの肉厚は10mmとなり、ボビン本体の
重量は56kgとなった。しかし肉厚については次に述べる工作精度の点からもあまり薄くする
ことは出来なかった。

SUS310-SはSUS804に比較して高価であるとともに加工性が多少劣る。しかし工作精度
が悪い場合、特にボビン内・外径の中心が一致していない場合には、コイルはヘリウム淵に
納められていて外部から見ることが出来ないので、コイル中心を決定することはむずかしい。
かといって完成後に径方向の磁場分布を測定して磁場中心を決定することも困難である。それ
故ボビン内径の中心がコイル中心となり、したがって磁場中心となるよう、ボビン工作にあた
っては内外径の中心が±0.05mmの精度で一致することを要求した。1mを越えるSUS310-S
のボビン工作をこのように内・外径ともに高い精度で行うことはそう容易なことではなく、工作
工場探しに多少の苦労が必要であった。ボビン材のSUS310-Sは山陽特殊鋼製造品を使用
し、工作は東京の富士機械株式会社が行った。

ボビンに線巻し必要な附属物を組み立てた後ヘリウム淵との溶接を行う。ボビン及び超伝導
コイル組立図を2図に、液体ヘリウム淵の外観図を3図に示す。後に述べるようにコイル及び

2図 超伝導コイル組立図
液体ヘリウム漏をスプークで懸下するためのスプーク受けがボビン両端にはめ合いで固定される。溶接の際の熱によってこのはめ合い箇所が熱ひずみを受け真円でなくなる可能性がある。そこで溶接部分からわずかな側に切込み溝を入れて一部フランジの肉厚を薄くして、ボビン本体への熱伝導を小さくするとともにひずみはこの箇所でとげるようにした。

コイルは4.2 Kに冷却して使用するのでコイルが液面から出た状態で使用することは危険である。したがって図に示されるようなCryo-NICEの溜では、コイル頂以下のスペースは無駄である。液体ヘリウムは高価であるので、極力デッドスペースを減らすことが望ましい。そのような無駄なスペースの少ない溜及びそれに合わせた一般的なクライオスタットの例を図

4図 一般的な水平設置型クライオスタットの例
に示す。我々は当初 (b) 図のような形状の図を計画していたが、コイル長が長いために溶接が困難であると同時に機械的強度を保障することがむずかしいために a 図に示した形状のものとなった。

ヘリウム液にたたれた液体ヘリウムは外部からの熱流入によって蒸発するためである。部屋中に充満すことは危険であるのでコイルの電流を切ってから充填する。超伝導コイルの場合、この手間はかなりかかりめんどうであるから一度充填したら長時間連続運転出来ることが望ましい。連続運転可能時間はヘリウム液の体積と液体ヘリウムの蒸発量によって決まる。熱流入を小さく出来れば図は小さくすることがある。我々は液体ヘリウムの蒸発量を1%程度と見計ったので、1日に1度の充填としてコイル頂以上の有効温度は23Kとした。ボビン、コイルを含むヘリウム溜全重量は95kgとなり、超伝導コイルとしてはかなり小型のものとなった。

ボビンと溜が一体となっていて、かつコイル長の長い場合には室温から冷却してゆくときに全体が一様に冷却されるように注意しなければならない。冷却が一様でないと冷却箇所の局部的な収縮によって目立つのが生ずる。ボビン又は溜の外壁の一部のみが4.2Kまで冷却されると全長×1/8の収縮が起こる。この収縮力がボビンと溜の溶接部にかかって、溶接は破壊される。事実、Cryo-NICEの液体ヘリウム溜が完成後液体窒素温度でのレーザー試験を行った際、かなり長時間かけて冷却したにもかかわらず溶接部にクラックが入るという事故があった。その原因は、溜の外側から液体窒素をふりかけたためにボビンは冷却されず、溜の目が収縮したためであることが判明した。溶接部を強化すると共に均一に冷却されるよう注意することによって、その後このような事故は発生していない。後に述べるように、液体ヘリウムを充満する際、流体が液体窒素温度から4.2Kまで冷却するのに要する液体ヘリウムの量は冷却がうまく出来るとどうなるかによって大いに異なる。したがって、コイル及び溜が一様に冷却されかつ冷却効率のよい流道入パイプの配置が大切である。Cryo-NICEでは、液は2図に示されているコイル上部の液体ヘリウム移設用パイプ受けから2本のパイプに分けられて、コイル端からコイル長の約1/8の位置のコイル下部から注入口される。そして蒸発したガスはコイル及び溜と熱交換した後に外部に排出される。

ボビン、液体ヘリウム溜の設計及びコイル組み立ては真空冶金K.Kで行い、溶接は日本真空工業で行った。
5. クライオスタット

5.1 クライオスタットの構造

クライオスタット（低温恒温槽）の製作では最も重要なことは、当然のことながら恒温部からの熱流入を最小限におさえることである。特に超伝導コイルのように沸騰している液体ヘリウムの場合、ヘリウムの蒸発潜熱が小さいために、わずかな熱流入によって多量の液体ヘリウムが蒸発する。一番簡単な 4.2 K クライオスタットは液体ヘリウム貯蔵用デュアラーである。簡単な液体ヘリウム・デュアラーではヘリウムろを液体窒素温度の幅射シールドで覆い、これを真空容器におさめてある。

水平設置型コイルの場合においても、簡単なクライオスタットとしては、図 4 に示したように、液体ヘリウム溜を幅射シールドで覆いそれに合った真空容器に入れればよい。真空槽、幅射シールド、ヘリウム溜の各間隔は 2～3mm であればよいから、上手に製作すれば真空容器もあまり大きくなくてすむ。図にも見られるように、通常、液体ヘリウム溜は外部からの熱流入を小さくするために液体供給の細いびび状のパイプのみによって支えられている。したがって機械的には弱い。又と上部とコイル中心まで 500 ～1000mm の長さがあるために室温時に比べて冷却時にコイル中心は 1.5 ～3 mm 移動する。さらにこの移動はクライオスタットの構造によっては平行移動とは限らないからやっかいな問題である。

Cryo-NICE では 2 章で述べたように、磁場中心を冷却時においても 0.1 mm 以内的精度で固定させることを目的としたので、このような液体供給パイプのずれは避けなければならない。そこで、懸下方式の原理としては、真空槽、液体窒素溜を円筒形にしてコイルボビンと同軸に設置し、等方的に張ったスプークによってまず真空槽フランジから窒素溜を、次に窒素溜からコイルポビンを亜下することとした。このような等方的に張ったスプークによるずれを防ぐこととした。冷却による収縮は各スプークに均等に張力をつけて懸下を保つ。これにより、各スプークの各部にはヘリウムを注入して収縮による上へ引き上げようとする張力がかからないようにした。

スプークを用いて懸下した場合には、恒温槽への熱流入はくびからの分にこのスプークからの熱を加わるから来るだけスプークによる熱伝導は小さくおさえたい。スプークの本数及び径は懸下に必要な荷重によって決まるからある程度の長さが必要である。特に窒素溜からボビンをつくるためのスプークは長くなる。さらにコイルボビンから上部につけ出したような非対称な形状のヘリウム溜を等方的に張ったスプークで懸下する場合、無駄な空間が多くなりこれを収納する真空槽は大きくなるものとなる。真空槽は可能の限り小さい方が良いし、かつ工作上の制約もあって Cryo-NICE 用真空槽の内径は 596 mm となった。幅射シールド用液体窒素溜については上に述べた完全円筒形に出来ず多少変形した形状となった。

液体ヘリウム供給口については通常くび上端で溶接する。しかし今回ののようなスプークによる懸下は初めての試みであり、溶接終了後にトラブルが生じた時のことが心配された。それ故
くび部については数種類のフランジを組み合わせて解体・組み立てが可能な構造にした。次に
辐射シールド、くびの構造について述べる。

5.2 輻射シールド

A．液体窒素溜

ヘリウム溜の高さは図に示されているようにコイル中心から285 mmである。コイル中心
を真空槽の中心に設置すると、ヘリウム溜頂部と真空槽内壁との間隔は61 mmである。この間
に円筒形の液体窒素溜を設置し、真空槽からスパンを張ってこの溜を懸下する余裕はない。
液体窒素溜は円筒の上部1/6を切り取り、その上に転形をした鋼板をかぶせてヘリウム溜を覆
うようにして、円筒の外径は460 mmφにおさえた。図にその詳細を示す。

図 輻射シールド用液体窒素溜

液体窒素移送口及びガス放出口は真空槽との接合の都合上ほぼ中央に位置している。ただし、
液体窒素を注入して溜を室温から液体窒素温度まで予冷する際に、蒸発ガスによる冷却効果を
上げるために移送口から溜の端までパイプをはわせてある。一方ガス放出口は溜の他方の端に
位置しており、蒸発したガスは溜内を一巡して十分熱交換した後外部へ排出される。
液体窒素溜が完全円筒でなくなったために、冷却時に変形する可能性がある。そこで6図に

6図 スポーク支持用フランジとスポーク支持方法

示すように、溜の両端フランジは切断せずにリング状にして残し、そこにスポーク固定用フランジをネジ止めする。かつこのフランジに厚さ12 mmの鋼円板を取りつけた。このようにして、溜が冷却によって変形した場合にもスポーク固定用フランジは変形せずに真円を保つと同時に、鋼製円板は液体ヘリウム溜の両サイドを覆うかたちとなって軸射シールドを兼ねている。

液体窒素溜は円筒形にして上部を切り取ったためにヘリウム溜の下部に位置することとなった。通常窒素溜は熱伝導率の大きな銅製とするが、Cryo-NICE の場合超高真空を要求するので溶接箇所からのリークを心配して溶接性のよいステンレス製とした。ステンレスの熱伝導率は小さいから、液体窒素が減少して液面が下がったときに上部の温度は上昇する。そこで溜内部に銅板を入れて常に銅板は液に浸っているようにして上部温度の上昇を防いだ。
B. 輻射シールド板

液体窒素液両サイドにある幅射シールド板の一方には電子銃、反対側には磁気シールド、電子ビームコレクター及びイオノレンズ系が設置される。又ボビン内の移動管、幅射シールドもこのシールド板によって支持される。幅射シールド板の詳細を7図に、ボビン内の構成を8図に、電子ビームコレクター及びイオノレンズ系を9図に示す。

幅射シールド内のヘリウム漏外壁がダライオボンプとして働き大きな排気速度をもっているから真空度はよいと考えられる。しかし、幅射シールドと真空槽の間の空間の真空度が悪いと、移動管はこの真空槽側空間とつながっているために移動管端から残留ガスが流れ込みイオン化領域の真空度は向上されない。一方この空間他の真空ボンプを用いて排気しようとすればかなり大型の超高真空装置が必要となる。そこで、両幅射シールド板に60 mmφ の穴を8ヶ所ずつ計16ヶ所あけ、ヘリウム漏外壁のクライオボンプ作用を利用して真空槽側空間の排気に利用することとした。ただ穴をあけただけでは真空槽内壁からの幅射が入り込むので6図に示されているようにブライドをおいて幅射シールドをしている。そのためあまり大きな排気速度は得られないが、500 L/sec 程度の排気速度になると期待される。450 L/sec のダーボ分子ポンプ1台によって 5×10⁻⁸ Torr まで予備排気した後、液体ヘリウム及び液体窒素液を液体窒素で冷却
した時点で真空度は 6×10^{-9} Torr になる。さらにヘリウム溜の液体ヘリウムを充填した時の到達真空度は 4×10^{-10} Torr に達する。この状態でターボ分子ポンプのバルプを閉じても真空度はほとんど変らない。

ボビン内はさらに真空度を良くする必要があるから、真空槽側と通ずる箇所が無いよう8図に示すようにテフロンシートとアルミニナ研子を用いて遮蔽してある。ボビン・フレンジと幅射シールド板との間隔は2mmと狭く、コンダクタンスは小さくしておくので、シールド板排気口を通して真空槽側残留ガス分子が入り込んでもボビン内へは到達しない。移動管の一方の端には電子錠を収納しつつ他端には内径10mmのリデューサーを挿入して移動管と真空槽側とのコンダクタンスC_1を小さくおさえている。移動管内の排気は移動管接続部の間隙のコンダクタンスC_2を通じて行う。したがって移動管内の真空度Pは真空槽側の真空度をPとしてボビン内の真空度は十分よろしければ

$$ P = \frac{C_1}{C_2} P $$

で決まる。C_1は電子ビームコレクター側のリデューサーで決まるが、肉薄のアパーチャーと仮定すると約8μm/secである。一方移動管の接合部は100カ所あり、間隔は3mmで移動管内径は84mmであるが、接合部のフレンジ部半分は絶縁研子でふさがれている。この場合にも肉薄のパイプが並んでいると仮定するとC_2は約150μm/secと見積もられる。$C_1/C_2 < 1/10$であるからイオン化領域の真空度$P < 4 \times 10^{-11}$ Torrで、当初の目標$P < 10^{-10}$ Torrに到達していると推定される。

この場合、移動管からボビン側が直接見える方が望ましい。特にガスをバースル導入する場合ボビン内壁の大きな排気温度を直接活用することが出来ると、そのためには移動管も液体窒素温度に冷やされていることが必要である。さもないと高温の移動管からの幅射シールドが必要となって排気速度は極度に減少してしまう。Cryo-NICEでは幅射シールド板に移動管を保持することによって、移動管も冷温してボビン間の幅射シールドは省略出来るようにである。安全のために電子錠ふくの幅射シールドで覆っている。ただし、電子錠、移動管には高圧がかかることで絶縁を介して固定する。したがってこの絶縁物の熱伝導能力以上の熱流入、例えば電子ビームのごく一部で移動管にあたるようなことがあれば、移動管の温度が上昇するから、そのような事故が無いよう注意が必要である。

5.3 液体ヘリウム溜くびの構造

くびは1図で示したように2カ所あり、それぞれ液移送口、電流導入口となっている。共に同じ構造であるので液移送口について10図に示す。11図には使用したフレンジの詳細とガスケットには富士テルモ製ステンレスOリングを使用したのでその規格を示す。くびの途中にはペローを入れて、冷却時の収縮力が液体ヘリウム溜にかかるようなものになっている。又漏頂部から870mmのところで軸型の幅射シールド板から亜流状に突き出した、くび部幅射シールドと

- 178-

-14-
くびを接合させ冷却している。幾つもの部品を組み上げてゆく構造となっているので、一部
回転フランジを使用し上部にもペーロを入れてある。

くびの上端は室温であるから、液体ヘリウム液面から上部フランジが観けると輻射による熱
流入が大きくなる。そこで、非常に簡便な方法であるがアルミ板2枚からなる輻射シールド
を入れてある。

10回 液体ヘリウム漏くび及び液体窒素移送口の構造

-15-
図11 液体ヘリウム潤くび内のフランジ
5.4 真空槽

真空槽の概要はすでに1図に示してある。イオンソースの全長は1760 mmで、超伝導コイルを収納している部分のフランジ外径は680 mm、イオン引き出し部フランジ外径は465 mmである。これら大口径フランジ部のガスクロムには耐熱アルミ製ステンレスOリングE-24000 (680°F)、F-465を使用したが、イオン出射部フランジは着脱が容易であるということからEVAC社クランプ・チェーン型アルミリングを使用した。それ以外のフランジはコンフラットフランジを使用し、排気線には排気速度450 l/secのターボ分子ボンプを使用した。バルブを使用しているのでボンプの実効排気速度は約300 l/secである。ボンプのみによる予備排気の時の到達真空度は5 x 10^-8 Torrである。

超高真空用真空槽としては300℃程度の焼出しをしたところであるが、内部に超伝導コイルが収容されているので、焼出し温度は100℃以下におさまなければならない。

6. スポークを用いた超伝導コイルの固定

6.1 低温用材料

これまでにも多少触れてきたように、クライオスタットの製作においては熱流を抑えなければならない場合もあり、又逆に熱伝導を良くしなければならない場合もある。したがって熱絶縁材、熟良導体をうまく組み合わせることが必要である。各種材料は低温においてそれぞれに特徴的な特性を示すが、クライオスタット構造材の低温特性についてはこれまで具体的には何も述べずにきたので、ここで多少ふれておく。ただし広範な材料の各種特性については他の文献を参考にしてもらうことにして、ここでは数多くの材料についてその熱伝導率、熱収縮比及び低温強度について紹介する。

代表的な材料の熱伝導率を12図に、20℃を基準にした熱収縮比を18図に示す。低温における機械的強度の温度変化を表3に示す。
12 図 各種固体の熱伝導率 BOC社 "Cryogenic Data Chart" より

13 図 20 °Cを基準にした固体の収縮

-182-
<table>
<thead>
<tr>
<th>品名</th>
<th>米国規格</th>
<th>JIS相当</th>
<th>成分処理</th>
<th>引張強さ (kgf/mm²)</th>
<th>離断点 (kgf/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 K 50 K 100 K 200 K 300 K</td>
<td>25 K 50 K 100 K 200 K 300 K</td>
</tr>
<tr>
<td>高力アルミ合金</td>
<td>2014－T6</td>
<td>A3－X1</td>
<td>漏入焼結モーディ</td>
<td>Si(0.5～1.2), Fe(1.0), Cu(3.5～5.0), Mn(0.4～1.2), Mg(0.2～0.8), Cr(0.1), Zn(0.25)</td>
<td>96 89 55 51 49 47.8</td>
</tr>
<tr>
<td></td>
<td>5056－HB4</td>
<td>A2－X2</td>
<td>加工硬化安定化処理 Si(0.3), Fe(0.4), Cu(0.15～0.4), Mn(0.15), Mg(0.5～0.6), Cr(0.5～0.2), Zn(0.1)</td>
<td>49 43 38 34 31 29.5</td>
<td>25 22 20 18 18 21.8</td>
</tr>
<tr>
<td></td>
<td>6061－T6</td>
<td>A2－X4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5052－HB4</td>
<td>A2－X1</td>
<td>加工硬化安定化処理 Si + Fe(0.45) Cu(0.1), Mn(0.1), Mg(2.2～2.8), Cr(0.15～0.35), Zn(0.1)</td>
<td>51 41 31 24 24 26.7</td>
<td>25 22 20 18 18 21.8</td>
</tr>
<tr>
<td>鋼</td>
<td></td>
<td></td>
<td></td>
<td>49 42 40 29 22</td>
<td>7 7 7 7 8</td>
</tr>
<tr>
<td>ベリリウム鋼</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-8ステンレス</td>
<td>304</td>
<td>SUS-27</td>
<td>漏焼</td>
<td>175 168 154 94 73</td>
<td>49 45 40 33 24</td>
</tr>
<tr>
<td>18-12モリブデンスチール</td>
<td>316</td>
<td>SUS-32</td>
<td></td>
<td>147 136 119 84 60</td>
<td>58 56 49 35 22</td>
</tr>
<tr>
<td>チタン合金</td>
<td></td>
<td></td>
<td>A1(6), V(6) 漏焼</td>
<td>188 170 146 117 98</td>
<td>178 160 138 108 91</td>
</tr>
<tr>
<td>チタン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネイロン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩化ビニール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ケルフ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フルオロ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ライト</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 強度の数字は変更
真空技術講座6「真空技術常用語表」（日本工業新聞社刊）P.261
10 K で高純度の銅と同じ程度の熱伝導率をもつ。Al₂O₃ の粉末を焼結したセラミックスや
グラファイトのような多結晶質のものは液体窒素温度附近ではほど合金と等しい熱伝導率を持
つが、ごく低い温度では低い熱絶縁材となるので、一種の熱スイッチとして利用される。

熱絶縁材としてはガラス、テフロンなどの非金属材料がよく使われているが、機械的強度が低い
ために構造材としてはあまり使用されない。構造材としてはステンレス鋼が強度と共に加工性
にも優れているために多く使用される。非金属材料のうちでも、加工性は劣るが機械的強度に
優れているものが F.R.P. ある。ガラス繊維を用いたガラス繊維の引張り強度はステンレスに
比較して多少劣るが、降伏点を比較した場合にはあまり差はない。炭素繊維を用いた C-F.R.P.
についてはステンレスよりも機械的強度に優れたもののが開発されている。表 3 に示されているよ
うな焼却処理を行わない通常の場合のステンレス鋼の引張強度は約 50 kg/mm² である。それ
に対し、東亜炭素繊維を素材とした小林木型社製 C-F.R.P. の引張強度は 90 kg/mm² でステ
ンレスの強度を優にしのいている。上記小林木型社製トレカ・コンポジットの機械特性を表 4
に示す。

<table>
<thead>
<tr>
<th></th>
<th>23°C</th>
<th>-160°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>引 张 强 度</td>
<td>68</td>
<td>54</td>
</tr>
<tr>
<td>宇 縮 弱 度</td>
<td>49</td>
<td>53</td>
</tr>
<tr>
<td>曲 げ 弱 度</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td>曲 げ 弱 性 率</td>
<td>4900</td>
<td>5100</td>
</tr>
</tbody>
</table>

（小林木型製作所製 トレカコンポジット）

F.R.P. は繊維をエポキシ等の樹脂で固めてあるから、そのガス放出速度は樹脂のガス放出に
よる。一般にエポキシ樹脂のガス放出速度は 10⁻⁶ Torr l/sec·cm² 程度と大きい。表面積が小さけれ
ばあまり問題にならない場合もあるし、表面処理によっても放出速度を減少させることができる
である。又低温においては減少することも考えられる。我々は Cryo-NICE の設計開発当初ス
ポーク材として F.R.P. の使用を計画したが以上の点について十分検討する余裕が無いために使
用を断念し、ステンレスを使用することにした。F.R.P. の使用が可能であるならば、同一形状
のもので比較した場合熱伝導はステンレスの 1/10 におさえられる。スポークは短くしてクラ
イオスタットの小型化を同時に十分に強度を持った懸下も可能である。ただし金属との収縮比
が異なるので Cryo-NICE のように構造材として金属と併用する場合には注意が必要である。
6.2 スポークによる超伝導コイルの懸下

スポーク支持のための各フランジ及びスポーク支持方法についてはすでに8図に示した。全体のスポークの構成を14図に示す。液体窒素、ヘリウム溜の重量は各々約100kgであるから、真空槽からのスポークは200kgの荷重を懸下することになる。スポークは真空槽両端に2組あるから1組のスポークにかかる荷重は100kgである。

14図 懸下用スポークの構成
A. 真空槽から液体窒素蒸気の懸下

漏をささえているスポークの本数は 1 組で 24 本である。このように本数を多くした理由は荷重を分散させて各スポークの荷重を小さくおさえるためである。漏をささえる役目をはたしているのは上半分のスポークだけであるが、今のスポークを均等に張って 100 kg の荷重をささえた場合の各スポークにかかる張力を使ってみる。各スポークと垂線がなす角を \(\theta \) とし、スポークに上部から 1 から 6 までの番号をふるとスポークにかかる張力 \(F \) は

\[
F = \frac{6}{\cos \theta} \cos \theta_1 = 100 \text{ kg}
\]

から \(F = 18.1 \text{ kg} \) となる。したがって下部スポークも入れて全スポークを張った場合には、上部スポークには下部スポークに比べて 18 kg 余計に張力が加わる。スポークが十分大きければ荷重による張力を無視し得る張力で均等にはるかに強く出るが、スポークに持つ液体窒素蒸気の熱伝達が大きくなり液体窒素の蒸発が激しくなる。熱流体による液体窒素の蒸発量については次章にゆずるが、窒素漏への熱流入を 10 ワット程度におさえるためにスポーク径は 2.3 mm とした。

ステンレスの降伏点は表 8 に示されているように窒温で 24 kg/mm\(^2\) であるから 2.3 mm のスポークの降伏点は 100 kg である。窒素蒸気では 40 kg/mm\(^2\) まで強度が増大するが、懸下作業は窒温で行う 100 kg が最大張力となる。2.3 mm のスポークの両端にネジ切リしてボルトで固定したのではネジ部の強度が低下する。したがって 8 図に示したようにスポーク両端の固定部は 5 mm のネジとなるよう、5 mm SUS - 804 スタットから旋盤加工によって作製した。スポークの細い部分の長さは液体窒素蒸気用で 77 mm、ヘリウム蒸気用で 155 mm である。旋盤加工時には入ったひずみ等でスポークが劣化している可能性もある。又、外側部分が急に細くななる形状をしている場合には、このラップ部分で強度の劣化がおこりやすい。したがって計画通りの強度が保たれているかどうかを引張りテストを行って調べた。

降伏点、引張り強度は各々 24 kg/mm\(^2\) と 55 kg/mm\(^2\) で劣化は認められなかった。

液体窒素蒸気冷却してゆくと、漏およびスポーク固定用フランジは収縮する。スポークの両端をボルトで固定したままにすると、この収縮は全てスポークに張力としてかかる。1 3 図に示された 78K におけるステンレスの熱収縮比の値 2.8 x 10\(^{-3}\) を用いると、窒素蒸気フランジの半径は 210 mm であるから半径は 0.59 mm 約する。この収縮をスポークでささえようとするとき、300K におけるヤング率 \(E = 21.1 \times 10^3 \text{ kg/mm}^2 \) を用いても \(F/S = (\Delta L/L) \times E = (0.59/77) \times 21 \times 10^3 \)

= 160 kg/mm\(^2\) と、ステンレスの引張り強度を越えてスポークは切断されてしまう。

これを避けるために各スポークの一端に緩パネをかませて上記の張力を緩和させた。非磁性のスプリング材として撹青鋼、Cu-Be 等について検討を行ったが、降伏力が小さく使用出来ない。ステンレス鋼にも硬化可能で降伏点の高い鋼材（SUS-630 H900°C、耐力 120 kg/mm\(^2\)）が存在するようであるがその詳細について知ることが出来ずまた入手することも出来なかった。

パネはコイル中心から約 200 mm 程度離して設置しかつ小型のものですので、鋼材には K.S
鋼を使用した。肉厚1mm、10mm×25mmの板を曲げて、3図に示したような三日月形をした
パネ定数100kg/mm、最大荷重200kgの板パネを製作した。
実際の組み立ての際には真空槽フランジと窒素滴フランジ間の間隔よりわずかな短い治具を
用意して、スポークの締め付けを調節しながら全周にわたってフランジ間隔が等しくなるよう
に懸下を行った。したがって各スポークの張力は完全に均等にはならないが、上記のようなパ
ネを使用したことによって収縮による張力に対しては各パネは均等に沈み込むものと期待して
いる。これを実測によって確認することはしていないが、Cryo-NICEの運転上支障をきたす
ようなことは現在まで起きていない。

B. 液体ヘリウム滴の固定

a. スポークによる懸下

ヘリウム滴の懸下に際しては、窒素滴の場合に比較して熱流入をずっと小さく抑えなければ
ならない。その上、コイル近傍に磁気シールドを設置するので、コイルと磁気シールド間に
働く引力にも耐え得る十分な強度で固定しなければならない。したがってヘリウム滴の固定
には窒素滴とは異った困難がある。

金属の収縮比は18図に見られる通り、ごく低温ではほぼ一定となり78Kと4.2Kで
はあまり変わらない。したがって窒素滴から非等方的な支持の仕方をしたとしても相対的な位置
は冷却時においても変わらない。原理的には荷重に耐え得る最小限の径のスポークで吊り下げる
だけでも、コイル中心の移動は無視出来る。ただしこのまでは振動してしまうし、Cryo-NICE
の滴が上に突き出た形状をしているために倒れてしまう。そこで、このような振動や倒れをあ
る程度防ぐために、14図に示されているようにスポークは上部に8本、下部に2本のスポー
クを用いほぼ等方に張ることにした。

スポーク径は最上部のみが3mmで他は2.3mmである。スポークを通じての熱流入を抑
えるためにスポークの本数は少なくしてある。上部8本のスポークにかかる、荷重をささえる
ための張力は80kgと大きくなった。全スポークを2.3mmとした場合には、耐力100kgに対
してこの荷重のための張力は80kgの割合が高く、下部スポークを張った場合にあまり余裕がな
い。事実、始めに最上部スポークにも2.3mmのものを使って組み立てたところ、しばらくし
てコイル中心が下がってしまうことがある。これは下部スポークを張りすぎて上部スポーク
の耐力を越えてしまったために起こったことである。このようにスポークの耐力ぎりぎりで懸
下を行っているので、安全を考えて最上部のみが3mm耐力175kgのものを使用した。

その点上の材料の節で述べたようにF.R.P.の使用が可能になれば、スポーク長を短くしてク
ライオスタットの小型化が可能ならばかりでなく、スポークの本数を多くして十分な強度の懸下
も可能になる。

液体窒素及びヘリウム滴をもし同時に冷却昇温が出来れば、上にも述べた通りコイル中心
の窒素溜に対する相対位置の移動はない。したがって窒素溜懸下の時に使用したようなバネの使用は不必要である。しかし同時冷却も容易ではないし、特に同時昇温は熟絶縁が良いから不可能に近く、昇温時には窒素溜から温度は上昇する。このように両溜間の温度差が生ずると前に考察したのと同様に懸下用スポークの切断の可能性がある。そこで6図にすでに示されていうように、窒素溜のときと同一の板バネを使用して収縮のちがいによっておこるスポークへの負担を避けるている。

b．細いステンレス線を用いた補強

以上で一応はヘリウム溜の懸下は出来たが、このままではステンレスは曲げ、ねじれに弱いので軸方向の振動とか非対称型溜の横揺れに対して不十分である。そこで窒素溜とヘリウム溜の空間に 0.8 mmφ のステンレス線を何本か張って補強を行った。横揺れに対しては、まずヘリウム溜頂部のくびを約 1.5 m の線の中央で縫り、その線の両端をくびに近い方の窒素溜フランジに固定する。その際に線をボルトに巻きつけたくと、線はボルトの回転とともに引く張られるからボルトの締めつけを調節すれば線の張り方を調節出来る。軸方向の振動防止には、まずコイルボビン両端で各 4 ケ所づつ約 1.2 m の線の 1 端を固定する。その線の他端を固定した箇所とは反対側の窒素溜フランジに固定する。この補強によって通常のクライオスタットとしては十分な強度をもって固定することが出来た。我々は作業のし易さを考えて 0.8 mmφ の線を使用したが、十分な長さとそれぞれの補強用線材による熱伝達は無視出来るからもっと太いものも使用可能である。真空棺と窒素溜の間はスポークの本数も多分十分な強度を持っているので、我々は補強を行わなかった。これと同様な方法で補強を行えばより強度のあるクライオスタットの製作が可能である。

c．ガラス棒によるコイルー磁気シールド間の補強

EBIS 型イオン源では、磁場によって影響されている電子ビームはコイルを出た直後にコレクターに捕集される。コレクターで捕集効率を良くするには、コレクター直前に磁気シールドを設けて磁場を発散させ、コレクター附近では磁場が存在しない状態が望ましい。Cryo–NICE では磁気シールドは輻射シールド板に固定されている。

コイルと磁気シールドの間に働く引力はマクスウェルの応力によって求められる。強さ H の一様な磁場のある真空中におかれた磁性体に作用する引力は

\[
T = 4.06 \times 10^{-8} S (H^2 - H'^2) \ (kg)
\]

で与えられる。ここで H, H' は共にガウス単位で、H' は磁性体が飽和して H と平行に動いている磁場の強さをあらわす。Cryo–NICE の最大磁場 20 kG が発散せずにシールド板に吸収され、かつ飽和しないとすると、S = 78.5 cm² であるとして T = 1270 kg に達する。このような大きな引力を、窒素溜とコイルボビン間に張った 0.8 mmφ のステンレス線 4 本でさえすることは出来ない。いま我々に、この引力を 4 本の線の径を太くしてささえよう とすると線の径は、

77 K における降伏点の値 45 kg/mm² を用いて、Φ = 2 \{1270/(4 \times 45 \times π)\}^{1/2} = 3 mmφ となる。
一方このとき線は伸びるが、線の長さ 1000 mm とし 300 K におけるヤング率 21.1 × 10^3 kg/mm^2 を用いて伸びを求めてみると \(\Delta L = (R \cdot F)/(S \cdot E) = 1000 \times 45/(21 \times 10^3) = 2.2 \) mm となる。このように線も大きく伝熱が無視出来なくなるし、コイルも移動する。

このように大きな力を材料の張力できさせることは問題が多い。Cryo–NICE では、放射シート板とヘリウム溜の間に直径 6 mmφ のパイレックスガラス棒 2 本を、コイル中心を通る鉛直線に対して対称な位置において、つつがい棒にこの引力をきさせている。一般に材料の圧縮強度は大きいので、つつがい棒方法は大きな応力に耐えることが出来るが、材料の長さはあまり大きく出来ないから熱伝導率の小さなものを選ばなければならな。熱伝導率は非常に小さく、引張り、曲げ、ねじれの強度は小さいが、圧縮強度だけは 65 kg/mm^2 と大きい。6 mmφ のガラスの両端が金属面にフラットにあたっており、かつコイルの移動方向と平行に設置されているとすると、2 本のガラス棒の圧縮に対する耐力は 3.6 × 10^3 kg となる。

実際のガラス棒の固定方法については 7 図に示してある。銅製のボルトに 6 mmφ の溝を作りこの溝にガラス棒を差し込んで、放射シート板の外からこのボルトをねじ込んで 2 本のガラス棒がほぼ均等な力でヘリウム溜外壁と接するようにする。後で取り出してみたところ、金属面との接触が完全にフラットでないと一部に細いビビが入っていることがあったが、破壊されることもなく実用上は差支え無い。又棒の一端がボルトと密着しているために、ねじ込む際にねじれ応力がはたらいて割れることになった。固定の際にこのようなねじれ力がかからないようにし、接触面をさらにフラットにする等の工夫をすれば、ほぼ所定通りの強度を発揮すると思われる。

ガラスは熱絶縁性はよいが機械的強度が小さいために、クライオスタットの構造材としてはあまり使用されない。しかし上述のように常に圧縮力のみが加わるように工夫すれば、その効用は大きいように思われる。ただし上記のような 2 つの構造物の間に入っている場合には冷却手順に注意をしなければならない。Cryo–NICE の場合には、内部構造物のヘリウム溜から先に冷却することが必要である。窒素溜から先に冷却すると窒素溜の収縮がこのガラスに加わり破壊の可能性がある。

以上のようにスリーブを使用することによってコイル中心を固定させ、比較的強度もある水平設置型クライオスタットの製作が終了した。現在 Cryo–NICE の運転上支障になるような構造上の問題は起っていない。しかし当初の目標であった、冷却によるコイル中心の移動を 0.1 mm 以内におさえるという課題を本当に達成出来たかどうかについては、今のところ不明である。そのようなチェックをする余裕も含めまま実用運転に突入してしまった。ただ運転開始後約半年経過した時点で点検したところでは、最初に設定した位置からのコイル中心の移動は認められなかった。
7. 寒剤の消費量

超伝導コイルを運転する際の寒剤の消費は2つに大別される。第1は、液体窒素及びヘリウム各路に液を充填する時に、まず高圧の溜を各液体温度まで予冷が必要である。その際に大型の装置であるとやや多量の寒剤を消費する。第2は、寒剤の充填終了後外部からの熱流入による蒸発である。前者の予冷に要する寒剤の消費は運転には直接役立たない損失であるから、熱流入を減らす努力は当然として、予冷効果の向上についても注意を払わなければならない。

7.1 寒剤の性質

一般に良く利用される寒剤としては、液体ヘリウム、水素、窒素、酸素などがある。これら等の寒剤のクライオスタット製作上必要と思われる性質を表5に示す。材料の冷却にとって重要な値は蒸発熱である。しかし蒸発したガスが材料と熱交換するような場合には、冷却能力としては蒸発熱とガスのエンタルピーによって決まる。各温度のガスのエンタルピーを表の下部に示してある。容積比は1℃の温度差で300 K 1気圧のガスになったときの容積をあらわす。

<table>
<thead>
<tr>
<th>液体</th>
<th>He</th>
<th>H₂</th>
<th>N₂</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>沸点</td>
<td>4.008</td>
<td>20.16</td>
<td>28.016</td>
<td>32.0</td>
</tr>
<tr>
<td>沸点の数値 (Kg/mol)</td>
<td>4.2</td>
<td>20.39</td>
<td>77.85</td>
<td>90.0</td>
</tr>
<tr>
<td>蒸発熱 (kcal/kg)</td>
<td>4.54</td>
<td>10.6</td>
<td>46.3</td>
<td>51.2</td>
</tr>
<tr>
<td>液体1℃あたりの蒸発量 (kcal/kg)</td>
<td>0.62</td>
<td>7.5</td>
<td>37.4</td>
<td>58.3</td>
</tr>
<tr>
<td>熱流入による蒸発量 (kcal/sec)</td>
<td>1.4</td>
<td>0.115</td>
<td>0.0280</td>
<td>0.0148</td>
</tr>
<tr>
<td>容積比 (300 K)</td>
<td>480</td>
<td>860</td>
<td>880</td>
<td>880</td>
</tr>
</tbody>
</table>

1 kW = 0.239 kcal/sec

7.2 予冷による寒剤の消費

温度T₂の固体を温度T₁まで冷却するのに必要な熱量はエンタルピーの差

\[Q = \int_{T_1}^{T_2} C(T) \, dT \]

で与えられる。
である。mol当りの比熱Cはデバイの式によってよく知られているように、デバイ温度Θに比べて十分高温では一定値8 Rに近づく。一方十分低温では

\[C = \frac{234 \text{ R (T/Θ)}^3}{T} \quad \text{T} \ll \Theta \]

となる。\(\Theta \)は代表的な金属では数百Kであるが、数十Kの温度領域では比熱は\(T^3 \)に比例する。したがってエンタルピーは\(T^4 \)に比例して温度が下がると急激に減少する。表6に種々の固体のエンタルピーの値を示す。

<table>
<thead>
<tr>
<th>物質</th>
<th>エンタルピー [joule/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 K</td>
</tr>
<tr>
<td>アルミニウム</td>
<td>4.63 \cdot 10^{-4}</td>
</tr>
<tr>
<td>鋼</td>
<td>1.8 \cdot 10^{-4}</td>
</tr>
<tr>
<td>ニッケル</td>
<td>9.8 \cdot 10^{-4}</td>
</tr>
<tr>
<td>グラファイト</td>
<td>1.68 \cdot 10^{-4}</td>
</tr>
<tr>
<td>シンクル</td>
<td>9.0 \cdot 10^{-4}</td>
</tr>
<tr>
<td>ウッダメタル</td>
<td>5.16 \cdot 10^{-4}</td>
</tr>
<tr>
<td>黒鉛</td>
<td>1.68 \cdot 10^{-4}</td>
</tr>
<tr>
<td>ボックスガラス</td>
<td>2.01 \cdot 10^{-4}</td>
</tr>
<tr>
<td>フェライト</td>
<td>2.10 \cdot 10^{-3}</td>
</tr>
<tr>
<td>テフロン</td>
<td>3.10 \cdot 10^{-3}</td>
</tr>
</tbody>
</table>

\(\text{cal/g} \)に換算するには0.2390を乗ずる。

真空技術講義6「真空技術常用諸表」（日本工業新聞社刊）

通常、超伝導コイルの予冷の手順は次のように行う。まず液体ヘリウム容器に液体窒素を満たして、冷却及び蒸発を77 Kまで冷却する。その後、液体窒素を追い出していくと、モーターボンで獲物を窒素の三重点93.9 Torr近くまで減圧し残った液を蒸発させて排気する。このようにすると、単に液体窒素の追い出しが完全にできるばかりでなく、減圧の温度を三重点温度63.15 Kまで下げることが出来る。その後液体ヘリウムの送信を行って4.2 Kまで冷却する。このような液体ヘリウムによる冷却を行う以前の処理によって材料のエンタルピーは大分に減少し予冷に必要な液体ヘリウムの量をずっと少なくすることが出来る。ちなみに77 Kの鋼のエンタルピーは約1.8 cal/gであるが63 Kまで冷却すると約0.9 cal/gと半減する。特に大型マグネットになればなるほど予冷に要する液体ヘリウムの量が増大するからこの予備冷却の効果は大きい。事実大型マグネットでは小型ヘリウム冷凍機を用いて20 K程度まで冷却した後、液体ヘリウムを充填する方法がとられている。鋼の20 Kにおけるエンタルピーは8 \times 10^{-3} cal/gに減少するから、わずかな量の液体ヘリウムで4.2 Kまで冷却出来、ただちに液は溶出し始める。
一方溶剤の冷却能力は液の蒸発熱と蒸発したガスのエンタルピーによって決まる。ちなみにヘリウムの場合、1 Lの液の蒸発熱は表5に示したように 0.62 kcal と非常に小さいが、それから蒸発したガスが完全に熱交換して 300 Kまでになったすると (376 - 7) x 0.125 = 46 kcal もの熱量を吸収する。したがって蒸気のエンタルピーを上手に利用できるかどうかによっても冷却に要する溶剤の消費量は大きく異ってくる。表7に材料の初期温度 300 K と77 Kの1 kgの金属を蒸発熱だけで冷却した場合とガスのエンタルピーを利用して冷却した場合に要する溶剤の量を示す。

<table>
<thead>
<tr>
<th>材料の初期温度</th>
<th>材料名</th>
<th>He⁴</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 K</td>
<td>アルミ</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>77 K</td>
<td>ステンレス</td>
<td>9.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>鋼</td>
<td>8.6</td>
<td>2.2</td>
</tr>
<tr>
<td>800 K</td>
<td>アルミ</td>
<td>1.6</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>ステンレス</td>
<td>0.79</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>鋼</td>
<td>0.79</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Jacobs, J.B. Advances in Cryogenic Engineering 18, 529 (1963)

BOC "Cryogenic Data Chart"

Cryo-NICE の場合ガスと液体ヘリウムの重量は約 100 kgであるから、蒸気による冷却がほとんど出来なかったときと 77 Kから 4.2 Kまでの予冷に 140 Lの液体ヘリウムが必要になる。一方蒸気の熱交換が十分よくおこなわれるすると 1 Lですむ。この差はあまりにも大きいが、設計の良し悪しによって予冷による消費量は大きく異なる。Cryo-NICE は横長コイルであるので 2 図のコイル組立図に示された、液移動パイプ受けから液は 2 本のパイプに分けられてコイル下部で 2 ヶ所からふき出る。実際に予冷に要する液体ヘリウムの量は 15 L弱である。一般的にはガス・溶剤全重量の 1/4～1/2程度の量を予冷で消費することであるから、Cryo-NICE の結果は非常によい結果であると思われる。

液体窒素の場合には、蒸発熱が 37 kcal/L と大きいので蒸気による冷却が不十分な場合でも十分な場合との消費量の差はあまり大きくない。したがってヘリウムの場合とちがって、よほどのことがない限り予想値とそう異ることはない。
7.3 熱流入口による寒剤の消費

寒剤への熱流入口の原因としては次のようなことが考えられる。

(1) 真空空間の残留ガスによる熱伝導

(2) 真空空間を通しての幅射による熱流入口

(3) クライオスタット構造材を通しての熱伝導

(4) ヘリウム淵くび及びくび内の液移送パイプ、液面計、電流リード等による熱伝導

(5) くび上部室温部分からの幅射

このうち(1)は通常のクライオスタットでは無視出来る。実験においてはこの部分を蒸発した低温のガスが流れているために熱の流入口を求めることがある。この問題について後で述べ、まずスポットのままの直接高温部分を接している構造材を通じての熱伝導と幅射による熱伝導について述べる。

いま均一な面積が等しい長さの固体の両端の温度が 1, 2 であるとすると、熱の流れ

の速さは

\[Q = \frac{A}{2} \int_{T_0}^{T_2} k(T) \, dT - \int_{T_0}^{T_1} k(T) \, dT \]

である。ここで \(k \) は 12 図に示した熱伝導率で、その積分値は種々の固体について求められている。2, 3 の例について表 8 に示す。

<table>
<thead>
<tr>
<th>温度 K</th>
<th>鋼 (電解)</th>
<th>アルミ 99 %</th>
<th>ステンレス</th>
<th>ガラス (\times 10^{-3})</th>
<th>テフロン</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8.0</td>
<td>0.176</td>
<td>0.0063</td>
<td>2.11</td>
<td>1.13</td>
</tr>
<tr>
<td>10</td>
<td>33.0</td>
<td>6.07</td>
<td>0.0293</td>
<td>6.81</td>
<td>4.4</td>
</tr>
<tr>
<td>20</td>
<td>140.0</td>
<td>27.6</td>
<td>0.163</td>
<td>20.0</td>
<td>16.4</td>
</tr>
<tr>
<td>76</td>
<td>686.0</td>
<td>220.0</td>
<td>3.17</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>802.0</td>
<td>284.0</td>
<td>5.28</td>
<td>292</td>
<td>187</td>
</tr>
<tr>
<td>200</td>
<td>1220.0</td>
<td>508.0</td>
<td>16.6</td>
<td>1030</td>
<td>442</td>
</tr>
<tr>
<td>300</td>
<td>1620.0</td>
<td>728.0</td>
<td>30.6</td>
<td>1990</td>
<td>702</td>
</tr>
</tbody>
</table>

幅射による熱流入口についてはステファン・ボルツマンの式

\[Q = 5.67 \times 10^{-12} \varepsilon A (T_2^4 - T_1^4) \]

によって求められる。\(\varepsilon \) は 2 つの面の平均放射率でそれぞれの面の放射率を \(\varepsilon_1, \varepsilon_2 \) とし面積を

\[A_1, A_2 \] とすると同軸円筒の場合

\[\varepsilon = \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_2 + A_1/A_2 (1 - \varepsilon_2) \varepsilon_1} \]

である。いくつかの材料の放射率の値を表 9 に示す。
<table>
<thead>
<tr>
<th></th>
<th>Surface temp K</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>28</td>
<td>77</td>
<td>300</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0050</td>
<td>0.008</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>0.0044</td>
<td>0.008</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.011</td>
<td>0.018</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Stainless steel 18-8</td>
<td>0.048</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver plate on Copper</td>
<td>0.013</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appl. Cryogenic Eng. p 154 (Vance and Duke)

BOC社 "Cryogenic Data Sheet" より

A. 液体窒素溜への熱流入

スポーツを通じての熱流入は、スポーツの断面積が 0.0415 cm²、長さが 5.5 cm で本数が 48 本であるから (0.0415/5.5) (30.6 - 3.17) x 48 = 10 ワットとなる。熱伝導による熱流入は全てステンレス製と仮定すると 22 ワットである。この他に電子銅が熱伝導シールド板に固定されているので、フィラメントの発熱は全て液体窒素に吸収される発熱量は約 15 ワットである。したがって全部で 87 ワットの熱が窒素溜に流入する。この熱流入による液体窒素の蒸発量は表 5 の値を用いて 0.85 ℓ/hr と予想される。ところが実際には 2 ℓ/hr の窒素が蒸発しとった。この原因についてはきりした根拠は無かったが、放射による熱流入が予想以上に大きいのではないかと考え、真空槽と窒素溜の空間に厚さ 80μ のアルミシートを両者に付えないように張って窒素溜を覆った。その結果、液体窒素圧搾直後は前と同様に蒸発は早いが約 10 時間後には蒸発は減少してほぼ当初の予定に近い値におさまった。このことは、アルミシートからの放射放出は窒素溜によって吸収されるために温度が下り、真空槽からの吸収と脇合う温度

\[
\tilde{E}A (T^4 - 77^4) = \tilde{E}A' (300^4 - T^4)
\]

におちつくためと考えられる。簡単のために \(\tilde{E}A = \tilde{E}A' \) とすると 2T^4 = 300^4 で T = 250 K
とると、このように放射による伝熱が予想より大きくなった原因は、きりりしない。窒素溜表面はパフ仕上げを施した。ステンレス表面には細い穴が無数にあいておりパフ仕上げを行うとパフの製造が研磨面に埋めこまれ、かなり入念な洗浄洗浄によっても取りのぞけないというわれている。我々は表面を有機溶剤で洗浄しただけであるので、そのような表面処理によって悪い結果になったとも考えられるが、いずれにしても原因ははっきりしない。
B. 液体ヘリウム溜への熱流入

はじめにスポーク及びガラス棒からの熱流入を求めてみる。スポーク長は 15.5 cm で直径 3 mmφ のものが 2 本、2.3 mmφ のものが 8 本使用されている。3 mmφ、2.3 mmφ のスポーク各 1 本による発熱は各々 1.4 x 10⁻³、8.5 x 10⁻³ ワットであるから全体で約 0.1 ワットである。熱流入による液体ヘリウームの蒸発量 1.4 kJ/h を用いるとスポークを通じての発熱による蒸発量は 0.14 l/h となる。ガラス棒は 6 mmφ、長さ 8.5 cm でボビン両端に各 2 本づつ計 4 本使用している。1 本あたりの熱流入は 1.4 x 10⁻² ワットで計 5.6 x 10⁻² イリウムで蒸発するから、これによる蒸発量は 80 cc/h となる。

幅熱による熱流入を見積ろうとする 4 K におけるステンレスの放射率が必要であるが表 9 には 4 K の値が欠けている。しかし結果にはあまり影響はないので 4 K についても 77 K の値を用いることにする。ヘリウム溜の表面積は 9.2 x 10⁻⁴ cm²、幅熱シールドの表面積は 1.5 x 10⁻³ cm² である。幅熱シールドははさみ全部ステンレス製であると仮定すると熱流入は 5.4 x 10⁻² ワットであり、それによる蒸発量は 80 cc/h である。

くびを通しての熱流入量を計算することは、先にも述べたようにそう容易ではない。くび内にはコイル巻き電流リード、液面計等が納められている。これ等は直接室温部分と接しているから、蒸気による冷却効果を無視して放射熱を求めてみると大変大きな値となる。特にリード線からの熱流入は、銅の熱伝導率が大きく、たとえ 2 mmφ のリード線であっても 1 ワットを越えてしまう。又 15 mmφ 肉厚 0.5 mm² の液送回パイプで 0.14 ワットとなる。しかし蒸発した低温ガスが流れているので、くび部の材料を通じての放射熱はずっと小さくなる。

通常の金属製クライオスタットでは、経験的に液体ヘリウム蒸発量は 0.5 l/h ~ 1 l/h である。したがって我々はこの値にスポーク、ガラスによる伝熱と幅熱伝熱による蒸発量約 300 cc/h を加算して、Cryo−NICE の蒸発量はうまくいって 1 l/h 弱、悪くて 1.3 l/h と見積もりた。実際に Cryo−NICE を運転してみたところ蒸発量は約 1.4 l/h となり、悪い方の見積もりを多少越えていた。ヘリウム溜の有効体積は 23 l であるから 24 時間近い連続運転を見込んでいたが、実際には 16 時間程度に減少してしまった。ただ幸いにも Cryo−NICE を使用しての実験は連続運転が不可欠な条件ではないし、かつ 16 時間の運転時間は 1 日の実験時間としても十分であるので特に改良もせずに現在は使用している。

このように液体ヘリウムの消費量が、当初我々が楽観的に考えていた見積もりをこえてしまった原因についていくつかのことが考えられる。第 1 に液体窒素の蒸発のところでも述べたように窒素溜の表面処理が不十分であったために幅熱伝導が見積りよりも大きい可能性がある。ただしこの点については判断が難しい。第 2 は最も多い可能性が高いと思われるが、くび部の構造があまりよくないために幅熱伝導が大きいことが考えられる。事実、くび上の室温部からの幅熱シールド 1 つをとっても一般には細心の注意を払って製作するのに対して、我々は固定方式に注意が集中して十分な対策を講じることが出来なかった。通常液体送送パイプは液体ヘリウ
充填後引き抜いて熱流入を減らしている。又電流リードについても、途中にスイッチを入れて永久電流方式に切り換えた後に切り離す方法にすると液体ヘリウムの蒸発量はずっと少なくすることが出来る。我々の場合液管送水管も多少工作精度が悪かったために引き抜くことが出来ず、固定したままで使用している。Cryo-NICE を用いた衝突実験に追われてこれ等の点について改良を行う余裕が無かったが、今後改良が行えれば液体ヘリウム蒸発量はまだ減少させることができないかと考えている。したがってこの点に関しても不十分ながらも我々の技術レベルからすればほぼ満足すべき結果ではないかと思われる。
8. おわりに

この報文は、新しい技術の報告というよりも、ズプロの素人がまがりなりにも使用可能な超伝導コイル及び超高真空クライオスタットを製作することが出来たという苦労話のようなものである。我々は超伝導コイルの実用については十分な知識を持っていないために、まずまずの結果だと考えているが、専門家の目からすればひどい誤解や思い違いがあるかもしれない。

Cryo-NICE の設計においては共立出版の実験物理学講座の「低温」及び「磁気」中の " 超伝導マグネット " が大役に立ったが、この報文を書くにあたっても参考にさせていただいた。

Cryo-NICE のコイル及び液体ヘリウム槽を除く工作は全て京和真空機械製作所で行った。我々のめどどよう困るに心よく応じていただいた高松氏に感謝します。超伝導コイル及びクライオスタットの製作に関し全く無知であった我々の質問に対して心よく応じていただきたく、かつ各種資料も提供していただいた真空冶金 K.K の高野氏、野口氏に感謝します。又、種々の助言をいただいた都立大学理学部物理学科の久米、米満研究室の諸氏に感謝します。スピーカーの強度テストをしていただいた都立大学工学部機械学科の三沢氏に感謝します。コイルボビン用 SUS -310 S 鎖造品の提供に御尽力いただいた山陽特殊鋼 K.K の森弘氏に謝意を表します。
多価イオンの一電子捕獲断面積の
価数依存性に見られる振動

阪大理 正

§1. はじめに

高電荷イオンと中性原子・分子との衝突による電荷移行過程の研究には、最近特に強い関心が寄せられている。この研究の情報は核融合プラズマのエネルギー損失や中性粒子打込みによる加熱、ビームブローフ計測法と関連して高温プラズマの挙動を理解する上での欠かすことのできない。① 多価イオンが電子を捕獲した結果、反転分布が生じればX線レーザーへの発展も考えられる。② 星の大気や星間空間では水素やヘリウムとの衝突による電荷移行が多価イオンの平均電荷数を下げる効果をもつ。③

以上のような応用面からの要請が強くなったことと、定常的に低エネルギーの多価イオンを引き出すイオン源が開発されたことから多価イオン中性原子の衝突研究は、理論・実験ともに1975年以降、活発に行われることになった。④ 星が大規模プラズマ研究所では1977年、客員研究としてNICE(Naked Ion Collision Experimentの略)計画が発足し、その間、多価イオン源として電子ビームイオン源(EBIS: electron beam ion source)を建設し、いくつかの原子衝突実験を行ってきた。⑤ その中には、低速度の多価イオンがヘリウム原子に衝突して一つの電子を捕獲する過程

\[\text{A}^{m+} + \text{He} \rightarrow \text{A}^{(m+1)+} + \text{He} \] (1)

の断面積がqの変化に伴い激しく振動する現象がある。本稿ではこの現象を紹介し、その原因について考察する。

ここでいう低速度衝突とは、入射イオンの速度が捕獲される原子の基軌道速度より遅い衝突をいう。低速度の衝突では、入射イオンと基軌道の形によって形成される準分子のモデルで衝突過程の議論ができる。多価イオンA^{m+}が中性原子Bに接近すると、核距離Rに応じてそのエネルギーが各過程に変化してボテンシャル・エネルギー曲線を形成する。A^{(m+1)+}の基底状態およびいくつかの励起状態のイオン化エネルギーはBのイオン化エネルギーより高いのが妥当である。このため第1図に示すように、相対運動のエネルギーを除けばRの大きい位置ではA^{(m+1)+}+BのほうがA^{m+}+Bよりエネルギーが低い。しかし、A^{m+}とB

第1図 A^{m+}+B→A^{(m+1)+}+B^+衝突系の透散(diabatic)
ボテンシャル曲線。

が近づくときはかなり接近するまでこの系のボテンシャル・エネルギーは大きく変わらないのに対し、A^{(m+1)+}とB^+が近づくときはクーロン斥力が働いてエネルギーはほとんど上がらない。このために、(1)式の左辺と右辺のそれぞれのボテンシャル曲線は核間距離が比較的大きい位置で交差する可能性が大きい。これらの交差点を経て電子の移行が起きると考えれば、一つの基底状態から多数の最終状態へのエネルギーが開いていることになる。断面積qが大きいほどこのチャネル数は増えるので断面積はほとんど速度依存性をもたなくなり、一電子捕獲過程をモデル的に捉えることが可能となる。標的が水素原子の場合の一電子捕獲に対して、個々のモデルが提案された。それらによって一電子捕獲過程の断面積\(q_{m-1} \)はqで比例して単調に増加する。αはモデルによって多少異なり、1〜2の間の値をとる。⑥

しかしこれらのスケーリング則は無数qの大さい場合に妥当な近似であり、価数の小さい場合には疑問を残す。事実、1979〜1980年に実行されたCrandallらオーケリー・グループのB,C,N,0の多価イオンとHとの衝突実験では、\(q_{m-1} \)は必ずしもqと共に単調には増加せず、イオン種によってさまざまな値を示した。⑦ その後、Blimanらグループも\(C,N,O,Ar \)の多価イオンとDとの衝突でスケーリング則からのごくを指摘している。⑧ 簡単なスケーリング則が成立しないことをもっとも統計的にそして明確に示したのはNICEグループの実験である。

§2. NICEでの実験と古典の一電子モデル

多価イオン源として採用したEBIS型イオン源は、従来、核加速器用に開発されてきたものであるが、最近は原子衝突実験にも使われるようになった。NICE
では、B, C, N, O 等の裸イオン−電子が完全にはぎと
られたイオン−をはじめとする多価イオンを電気的に
引き出させて衝突実験に用いることができる。

次に He を原子中の原子と電子を捕獲過程（1）の断
面積の測定結果を示す。\(^\text{10}\) 多価イオン A^+ としては、
裸イオン（B^+, C^+, N^+, O^+）, H 原子イオン (B^+, C^+, N^+, O^+, F^+, Ne^+), He 原子イオン （B^+, C^+, N^+, O^+, F^+, Ne^+, S^+), Li 原子イオン (C^+, N^+, O^+, F^+, Ne^+, S^+) の全てを電子系列のイオンを捕獲している。衝突
エネルギー範囲は 1.5g−3.0g keV で、この範
围では大部分の断面積はエネルギーに依存しない。衝突エネルギーが 0.2keV/amu の場合の一電子捕獲断
面積を図の関数とすると第 2 図に示す。折れ線は各等
電子系列を結んだもの。これをみると、q=3, 5 に当
る断面積が q=4 のそれより 1.5 倍近く大きいとなる。次
に実験誤差（±30%）を上回る断面積の振動構造がすべての等電子系列のイオンについて読み取れる。特に小さい q で振動が著しく、q が大きくなると共に
振動は減衰して、Müller-Salzbom が実験的に出した
スケーリング則（2）で近似することができる。\(^\text{13}\)

一般に、低速度での電子捕獲の理論的取扱いでは、
〈電子捕獲断面積の解析方法 (PSS 理)〉がもっとも
正統的な方法とされている。しかし、今の場合、B^+,
C^+ + He 系についての Shipsey らの計算がない。\(^\text{13}\)
一方、関谷・佐々木・渡部による〈ユニテリ化され
た亜磁気近似 (UDWA)〉法は、広いエネルギー領域で
一つの解析の結果を特定するのに、個々の原子が H の場合
についての実験結果をかなりよく説明している。\(^\text{14}\)

しかかも低速度では、UDWA 法は〈ポテンシャル曲線
の交差にとつく古典的電子モデル〉の計算と等値
であることから、実験の解析のための指標を提供する。\(^\text{14}\)

\[^{10}\] 一方、関谷・佐々木・渡部による〈ユニテリ化され
た亜磁気近似 (UDWA)〉法は、広いエネルギー領域で
一つの解析の結果を特定するのに、個々の原子が H の場合
についての実験結果をかなりよく説明している。\(^\text{14}\)

\[^{13}\] 一方、関谷・佐々木・渡部による〈ポテンシャル曲線
の交差にとつく古典的電子モデル〉の計算と等値
であることから、実験の解析のための指標を提供する。\(^\text{14}\)

\[^{14}\] 一方、関谷・佐々木・渡部による〈ポテンシャル曲線
の交差にとつく古典的電子モデル〉の計算と等値
であることから、実験の解析のための指標を提供する。
第3図 有効核電荷の関数としての一電子捕獲断面積

ずしもよくないが、古典の一電子モデルが非常に大胆な近似をしていることからみてやむをえない。しかし、このモデルは観測された、断面積の特徴的な振動構造の本質を捉えているように思われる。

低Zイオンではnの小さな準位へ電子が捕獲される。そこで準位の間隔が大きいためnの値が1だけ増えても断面積は大きく変化する。一方、高Zイオンでは大きなnに捕獲されるが、そこでは準位が密に分布しているためにnの変化による断面積の変化も小さい。

第4図 C^6+ + He → C^4+(n) + He^+ のエネルギー依存スベクトル。

これが高Zイオンで断面積の振動が顕著する原因である。

特定の準位nに選択的に電子が捕獲されるという考えは、古典モデルの重要な予測であるがはたしてそのであろうか。これを確かめる実験をNICEグループが目下行っている。電子を捕獲したイオンのエネルギー損失（または利得）スペクトルを観測し、これを解析することによりイオンのn分布が求まる。C^4+, O^4+, B^4+ イオンで調べた結果では、C^4+ はn = 2、O^4+ はn = 4、残りはすべてn = 3 というように、特定のnに選択的に電子の移行が起ることが分った。

これらのn値は一電子モデルでの予測と一致する。その一例を第4図に示す。すなわち低エネルギーのA^3+ + He 衝突の一電子移行では、古典の一電子モデルがかなり良い指針となることが確かめられたといえよう。

さらに高いZのイオンについては、古典モデルの予測と一致して二つ以上の準位に電子が捕獲される可能性も無視できないだろう。これは今後の興味深い課題である。

文 献
L.D. Gardner, J.E. Bayfield, P.M. Koch, I.A. Sellin, D.J. Pegg, R.S. Peterson and D.H.
多価イオン（$q \leq 41$）による一電子捕獲

関西医科大教授　岩 井　鶴 二

§1. はじめに

多くの研究者たちが、それに近い多価イオン（例えば O^7）や、価数の極めて高いイオン（例えば Kr^{23+}）による電子捕獲反応を、原子物理学の問題として非常に興味があるだけでなく、核融合プラズマ中の不純物問題やX線レーザー開発の可能性などに関連して注目を集めている。この研究のためには特別のイオン源が必要で、各国で競ってその開発が行われていたが、名大プラズマ研のNICE（Naked Ion Collision Experiments の略）グループ
214

都市では既にそのための装置を完成し，それを使って多個イオンによる He 原子からの一電子捕獲反応，
\[A^{++} + He \rightarrow A^{(0-1)+} + He^+ + \Delta E \]
(1) * について，\(q=3 \) から 41 までにわたって系統的に調べ上げることに成功している. その結果，多個イオンによる一電子捕獲反応についての理解が深められたので紹介する。

§2. 実験でわかったこと

第 1 図にこのイオン源 (NICE-1) で得られた \(I^{+} \) のマススペクトルを示す。** 1） \(I^{+} \) まで生成されていることがわかる。得られたイオンビームはエネルギー分布が半価幅で 0.8 × \(q \) eV と比較的狭く，反応前後のイオンの運動エネルギーを測定することにより \(\Delta E \) を求めることができ，\(\Delta E \) が決まったら生成イオン \(A^{(0-1)+} \) のエネルギー状態がわかることになる。

反応 (1) について NICE グループの実験によってわかった特徴的なことを列記すると次の通りである。
1） 倍数 \(q \) が十分大きければ，反応の様相は元素 \(A \) の種類によらず \(q \) のみで決まり，同じ倍数のイオンは同じ模に振舞う。
2） 電子は \(A^{(0-1)+} \) のごく限られた \(n \) 準位（ \(n \) は主量子数）に選択的に捕獲される。例えば \(q=6 \) では \(n=3 \) の準位に入り， \(n=2 \) にも \(n=4 \) にも入らない， \(q=40 \) では \(n=15 \) 程度の準位へ入ると推定される。

第 1 図 NICE-1 による \(I^{+} \) ピームのマススペクトル， \(m/q=2, 3, 4, 6, 8, 12, 14, 16 \) などは不純物イオン（H. Tawara, et al.: J. Phys. B 18 (1985) 337 より転載）。

* A=B, C, N, O, F, Ne, S, Kr, I の各元素， \(\Delta E \) は反応エネルギーで \(\Delta E>0 \) のとき発熱反応。
**倍数 \(I^{+} \) は他に同位体がないために，H, He, C, N, O 等の不純物イオンと明瞭に分離できる。

3） 倍数 \(q \) が 10 以下では反応 (1) の断面積は \(q \) と共に振動しながら増加し， \(q \) が 10 以上では単調に増大して \(q=41 \) では \(2 \times 10^{-14} \text{cm}^2 \) にも達する（第 2 図参照）。

これらの特性のうち 1），2）は第 1 表にまとめてある。

捕獲された電子が元素の種類に関係なく，倍数に固有な特定の準位に入ることがわかる。これはまた，十分に倍数が高ければ，残った芯電子による遮蔽はほぼ完全で，\(A^{+} \) はあたかも正電荷 \(qe \) をもった点電荷と考えてよいことを示唆している。第 1 表にも見られる断面積の \(q \) に対する振動については，既に木村がこの領域で紹介し，13 簡単な古典的-電子モデルで定性的に説明した。

第 1 表 一電子捕獲断面積と電子捕獲準位，上段は断面積の実測値（10^{-14} \text{cm}^2）で，括弧内は準位の主量子数 \(n \)。

<table>
<thead>
<tr>
<th>(q)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.9 (2)</td>
<td>0.1 (2)</td>
<td>1.5 (3)</td>
<td>0.9 (3)</td>
<td>1.4 (3)</td>
<td>1.3 (4)</td>
<td>2.7 (4)</td>
</tr>
<tr>
<td>N</td>
<td>0.3 (2)</td>
<td>1.4 (3)</td>
<td>1.4 (3)</td>
<td>1.3 (4)</td>
<td>1.8 (4)</td>
<td>2.8 (4)</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>2.3 (3)</td>
<td>1.1 (3)</td>
<td>1.8 (4)</td>
<td>3.0 (4)</td>
<td>2.9 (4)</td>
<td>1.9 (5)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.9 (3)</td>
<td>1.8 (4)</td>
<td>3.0 (4)</td>
<td>2.9 (4)</td>
<td>1.9 (5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
§ 3. 古典の一電子モデル

反応 (1) は第 3 図のような透熱ポテンシャル曲線の交差点を経て起こると考える。ここで反応系 A⁺⁺ + He のポテンシャル曲線は直線で、生成系 A⁻⁻⁺⁻ + He⁺ のそれはクーロン斥力だけで近似できるものとする。

He の 1s 電子が He⁺ からの束縛を脱して A⁺⁺ の引力圈に進むと、A⁺⁺ と He⁺ との引力 R が束縛距離 R と近接する必要がある。古典モデルでは、R に近接する束縛を脱して電子が移行するとき、そのときの電子の移行確率を 1/2 として、断面積を q = 1/2πR² とする。

この古典の一電子モデルは、q < 10 の場合に見られる断面積の仮数に対する振動を定性的に説明することに成功し、また捕獲電子の入る束縛の主量子数を正確に予言することができたが、大きな欠陥のあることも分かった。このモデルによれば、断面積は (1/2πR²) で与えられるので、R と共に単調に増加してゆくこともである。一方第 3 図のポテンシャル曲線を仮定すれば、実験で JE を求めることにより R を正確に決まる。こうして得た R と束縛の関数として実測の断面積をプロットすると、q < 10 では期待に反して、ある R とところで極大を示し、それ以上の R で減少してしまう。また q が10以上になると断面積の振動が急激に増えて q と共に単調に増大する様になるのも、このモデルでは理解しにくい。

§ 4. Landau-Zener (L-Z) 理論

第 4 図のような透熱ポテンシャル曲線の交差点のある場合の交差点付近での選移については、古くから有名な Landau-Zener の理論がある。反応系 A⁺⁺ + He と生成系 A⁻⁻⁻⁻ + He⁺ の間に相互作用があり、相対

![第 3 図 古典の一電子モデルの説明図](image)

§ 4. Landau-Zener (L-Z) 理論

速度が無限小の極限では二つのポテンシャル曲線は交わることができず (Wigner の非交差則)、点線の様になる。これは断熱ポテンシャル曲線であって (AHe)⁺⁺ 分子のエネルギー状態に対応する。しかし相対速度が有限の場合には二状態間の選移の確率が生ずる。L-Z 理論によれば、系が透熱ポテンシャル曲線に沿って交差点を通過する確率は

\[p = \exp \left(-2\pi \frac{E}{v_0} dF \right) \]

(2)

で与えられる。ここで dF はそれぞれ交差点 Rc での相対速度 (軌道方向) と透熱ポテンシャル曲線の勾配の差である。また R は反応系と生成系の相互作用ポテンシャルの行列要素で、断熱ポテンシャルの間隔の 1/2 になっている。系が断熱ポテンシャルに沿って進行する確率は (1−p) になるから、衝突完了時に系が反応系から生成系に移っている確率は

\[P = 2p(1−p) \]

(3)

で与えられる。この有名な L-Z 理論は今迄実際の系について実験と厳密に比較することができますがなかった。これはポテンシャル曲線や H について正確に知られている系がはっきりとできているからである。多価イオンによる一電子捕獲反応は、上記の様に透熱ポテンシャル曲線が簡単な関数でなく正確に近似でき、H についても理論的に取扱い難しい。L-Z 理論を基にっても多価イオンの電子捕獲反応は現実の材料である。

さて、反応 (1) における H のについての理論はいくつかあるが、L-Z は R と比例する形で与えられ R と R の増加とともに急激に減少する。従って R が小さいときでは p は近似し、一方 R が十分小さければ p は 0 に近くなる。一電子捕獲の確率は (3) 式から p = 1/2 であるので、p = 1/2 のとき P = 1/2 で最大となる。つまり R が適当な大きさのときだけ P が有限の値をもつ。これは断熱系のポテンシャル曲線を一旦しか考えなかったが、実際には第 3 図の様に n の異なる単位に
対応したポテンシャル曲線が多数ある。そのどれかの交差点が上記の様な適当な核間距離の範囲にあれば、その準位への電子捕獲が起こるわけで、古典論と同様、
一定の低い場合の変形の振動も、断面積が R_n の適
当なところで極大を示すこと、共に説明できる。
§ 5. Multi-Channel-Landau-Zener (M-C-L-Z) モー
デル
L-Z 理論では、断面積の R_n 依存性は q が小さいほ
ど短く、q が増すにつれて極大が R_n の大きい方にず
れると同時に幅も広くなる。そこで、q が増すにつ
れて電子を捕獲する準位の n が大きくなることは既に
若者通じてある。n が大きくなれば準位の間隔はつま
ってくるため、n の異なる複数の準位が反応に寄与す
る可能性が生ずる。幅が10以上になると断面積の振
動が消えるのはその故かと思われる。しかし実測され
た DE の幅は $q=30$ 程度で変えることが必要なく、
反応に寄与する準位はせいぜい $n, n±1$ の 3 通りほど
と考えられる。一方 n の增大に伴い、 l の異なる準準
位の数は n に比例して増加する。従って若者が大き
くなると非常に沢山の準位が反応に寄与するだろう。こ
これらの準位数はすべて反応系のポテンシャル曲線と交
差するので、こうした多数の交差点を経由して反応が
起こると考えられる。そこで木村らは各交差点での
遷移確率 P_l に (2) 式を用い、反応の起こる全確率 P_p は (3)
式の代わりに考え得るすべてのチャンネルについての合計
と考えて計算を試みた。40 これを Multi-Channel-
Landau-Zener (M-C-L-Z) モデルと言え、この計算で
得た全体面積を第 2 図の△印で示し、図の近似のわかり
には実験との一致はかなりよい。またこの計算から
推定される生成イオンの n 分布は $q=20$ の場合、
$n = 8, 9, 10$ が 25:60:10 の割合であって、比較的狭い準位
に集中していることも実験結果とよくあう。さらに、
こうして得られた全体面積は交差点の平均値を R_n と
するとほぼ nR_n^2 に近く、 q が 10 以上では再び古典論
の予測が当たる様になることが分る。
§ 6. おわりに
いえるが $q = 3$ ～ 41 という広い範囲にわたって多個イオ
ンによる一電子捕獲反応を系統的に調べた結果、その
* 純イオンと H については回転結合を考慮して M-C-
L-Z 理論が Janev らによって行われている。

反応機構についてかかなりの程度理解することができた
と言うより、反応 (1) は He を理想的にしているが、これ
はたまたま実験がし易いかから、ここで分った反応
機構は現実に H 原子になっても変ることはないと思わ
れる。多個イオンの振舞はその原子の種類によらず類
数のみで決まることが分った。ここで得た Kr^{34+}
の結果は Fe^{33+} (H 構造イオン) の振舞とほぼ同じであり、
1^{43+} の結果は Nb^{41+} (純イオン) の振舞とはほぼ同じ管
である。これら金属多価イオンと H 原子との反応に関
する知見は核融合研究で最も強く要求されているもの
だが、その実験は容易でない。ここに紹介した結果は
その様々な困難な実験が可能になる道の先端をとしても
十分役に立つ管である。

文献
1) 木村正広：日本物理学会誌 37 (1982) 763.
2) S. Ohtani：Electronic and Atomic Collisions，ed. J. Eichler, I.V. Hertel and N. Stollerfoht
3) 小林信夫, 他：IPPJ-DT-84 (名古屋大学プラズマ
4) Y. Kaneko, T. Iwai, S. Ohtani, K. Okuno,
N. Kobayashi, S. Tsurubuchi, M. Kimura,
H. Tawara and S. Takagi：Physics of Electronic
and Atomic Collisions，ed. S. Datz (North-
10) S. Takagi, et al.：Nucl. Instrum. & Methods
(1983) 3291.
Opt. 10 (1971) 1848.
(1976) 579.
18) S.E. Butler and A. Dalgarno：Astrophys. J.
19) R.K. Janev, D.S. Belic and B.H. Bransden:
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Title</th>
<th>Authors/Editors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPPJ-AM-3</td>
<td>“Grotrian Diagrams of Highly Ionized Iron FeVIII-FeXXVI”</td>
<td>K. Mori, M. Otsuka and T. Kato (1977)</td>
<td>[Published in Atomic Data and Nuclear Data Tables 23, 196 (1979)]</td>
</tr>
<tr>
<td>IPPJ-AM-5*</td>
<td>“Charge Transfer between a Proton and a Heavy Metal Atom”</td>
<td>S. Hiraide, Y. Kigoshi and M. Matsuzawa (1978)</td>
<td></td>
</tr>
<tr>
<td>IPPJ-AM-9</td>
<td>“Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy Range from 0.1 eV to 10 MeV I. Incidence of He, Li, Be, B and Their Ions”</td>
<td>Kazuhiro Okuno (1978)</td>
<td></td>
</tr>
<tr>
<td>IPPJ-AM-10</td>
<td>“Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy Range from 0.1 eV to 10 MeV II. Incidence of C, N, O and Their Ions”</td>
<td>Kazuhiro Okuno (1978)</td>
<td></td>
</tr>
<tr>
<td>IPPJ-AM-11</td>
<td>“Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy Range from 0.1 eV to 10 MeV III. Incidence of F, Ne, Na and Their Ions”</td>
<td>Kazuhiro Okuno (1978)</td>
<td></td>
</tr>
<tr>
<td>IPPJ-AM-12*</td>
<td>“Electron Impact Excitation of Positive Ions Calculated in the Coulomb-Born Approximation—A Data List and Comparative Survey—”</td>
<td>S. Nakazaki and T. Hashino (1979)</td>
<td></td>
</tr>
</tbody>
</table>
“Cross Sections for Charge Transfer Collisions Involving Hydrogen Atoms”
Y. Kaneko, T. Arikawa, Y. Itikawa, T. Iwai, T. Kato, M. Matsuzawa,

“Two-Centre Coulomb Phaseshifts and Radial Functions”

“Empirical Formulas for Ionization Cross Section of Atomic Ions for
Electron Collisions – Critical Review with Compilation of Experimental
Data”

“Data on the Backscattering Coefficients of Light Ions from Solids”

“Recommended Values of Transport Cross Sections for Elastic Collision and
Total Collision Cross Section for Electrons in Atomic and Molecular Gases”
M. Hayashi (1981)

“Electron Capture and Loss Cross Sections for Collisions between Heavy
Ions and Hydrogen Molecules”
(1981)

“Surface Data for Fusion Devices – Proceedings of the U.S.–Japan Work-
shop on Surface Data Review Dec. 14-18, 1981”

“Desorption and Related Phenomena Relevant to Fusion Devices”
Ed. by A. Koma (1982)

“Dielectronic Recombination of Hydrogenic Ions”

“Bibliography on Electron Collisions with Atomic Positive Ions: 1978
Through 1982 (Supplement to IPPJ-AM-7)”
Y. Itikawa (1982)

“Bibliography on Ionization and Charge Transfer Processes in Ion-Ion
Collision”
H. Tawara (1983)

“Angular Dependence of Sputtering Yields of Monatomic Solids”
Y. Yamamura, Y. Itikawa and N. Itoh (1983)

“Recommended Data on Excitation of Carbon and Oxygen Ions by Electron
Collisions”
(1983)

“Electron Capture and Loss Cross Sections for Collisions Between Heavy
Ions and Hydrogen Molecules (Up-dated version of IPPJ-AM
IPPJ-AM-42 "Stopping Power Theories for Charged Particles in Inertial Confinement Fusion Plasmas (Emphasis on Hot and Dense Matters)"

IPPJ-AM-43 "The Collected Papers of Nice Project/IPP, Nagoya"
Ed. by H. Tawara (1985)

Available upon request to Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan, except for the reports noted with *.