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Abstract

This report is addenda to our previous report IPPJ-AM-46
published in September, 1986 which is concerned with atomic
data involving hydrogens relevant to the edge plasma studies.
The main emphasis of the present report is placed on the
survey of characteristics of hydrogen atoms and ions produced

through the dissociation or excitation of hydrogen molecules
by electron impact.
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I. Introduction

A series of atomic processes involving hydrogens, atomic,
molecular or ionic, play a significant role in understanding
the behavior of edge or boundary plasmas in fusion devices.
We have recently compiled atomic data for such processes
which seem to be relevant and important for such a
investigation!)., There atomic data for about 150 processes
for hydrogens in collisions with electrons, photons and
atomic, molecular hydrogens and their ions are given in
figures or tables. In understanding and modelling hydrogen
plasmas, the behavior of their constituents such as atoms,
molecules, or ions has to be known. For that, the potential
energy diagram of molecules is most convenient (see Fig.l).
In Fig.2 are shown summaries oL total cross sections for
various excitation processes of molecules with the reference
of ionization cross sections for molecular hydrogens by
electron impact which have been well investigatedl!.

It is clear that, at low energies 1071-a few eV, the
rotational excitation and then vibrational excitation of
molecules are dominant and above a few eV the electronic
excitation processes play a role. Most of these electronic
excitations result in dissociation of molecules where atomic
hydrogens or hydrogen ions(protons) are produced. The energy
distribution and angular distribution of hydrogen atoms from
these dissociative excitation/ionization processes are known
to be important and to play a key role in modelling the
boundary plasmas which are discussed in section II.

These excitation processe are closely related to the line
emissions from hydrogen atoms in the excited states. 1In
Fig.3 are shown summaries of the cross sections for emissions
of Lyman and Balmer lines as well as Lyman and Werner bands.l)
These emission data are necessary for estimating the cooling
of plasmas through photon emissions. Here it is noted that
Lyman band data include the contribution of cascades from the
upper excited states, meanwhile their contribution to Werner
band is minimal.

In section III are discussed similar data on protons
resulting from dissociative ionizations. The cross sections
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for production of total protons and Hz+ ions from H, molecules
are shown in Fig. 4, together with those for ionization of
the ground state and metastable 2s atoms. In Fig. 5 are shown
the cross sections for various processes including the
dissociative recombination, dissociation and proton
production from H,* ions under electron impact. At low
energies, the dissociative recombination is dominant over
other processes, where at intermediate to high energies
dissociation and icnization become dominant. Similar data
for Hy* ions are shown in Fig.6.

It should be noted that the rotational/vibrationl
excitation processes as well as electronic excitation
processes .are significantly influenced by the densities of
plasmas as discussed by Janev et al.?) which effect is not
included here.
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Note :

normalizing cross sections at 100. eV by Shemansky et al.

The cross sections shown in the preceding page are based upon the

1)

More recent

data became available as follows ( at 100 eV in units of 10_18cm2)
‘Shemansky et al.l) 8.12 + 1.20
Van Zyl et al.z) 7.22 £ 1.36
Woolsey et al.s) 7.13 + 0.59
McPherson et a1.4) 6.57 £ 0.53
References
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3) J.M. Woolsey, J.L. Forand and J.W.McConkey, J.Phys. B 19 (1986) L493
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II. Hydrogen atoms from dissociative excitation/ionization of
molecular hydrogens.

Various data involving production of atomic hydrogens,
either in the ¢round state or in the excited states, have
beén obtained. The characteristics of the atomic hydrogens
can be understood qualitatively through the potential energy
diagram. Because of difficulties in detecting them, in
particular atoms in the ground state, only a few systematic
investigations have been carried out until now.

1. The ground state atoms
Total cross sections for production of two atoms both in
the ground state, H(ls), through the process

e + Hp + Hy(b3Z,%) + H(ls) + H(1ls) (II-1)

are known!). However, their energy distributions and angular
distributions are not yet investigated . The average kinetic
energy of both atoms is estimated to be around 2-3 eV each
from the energy loss spectrum and from the energy diagram and
hydrogen atoms themselves are expected to be isotropically
distributed. 1In order to investigate the behaviour of H(ls),
powerful lasers are necessary to excite both of them
simultaneously. This is one of the important and basic
problems in understanding dissociation of molecular
hydrogens.

With increasing the impact energy, hydrogen atoms in the
ground state, H(ls), origintate not only from the lowest
repulsive b3X,+ state mentioned above but also from a number
of (singly) excited states (see Fig. 1). From the latter
excited states, usually two groups of H(ls) with different
energies are produéed: one is the near-zero energy atom (for
exapmle, from the attractive 2Xg" 1so state resulting in
dissociation into H+ + H(ls)) and the other one relatively
high energy atom (from the corresponding repulsive 2poy 2Z4+
state). In between there are a series of the channels
contributing to production of these atoms resulting in H(1ls)
+ H*(n,¢). By looking at the potential energy diagram, the

il
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energy distribution of H(ls) atons is estimated as shown on
the left hand side of Fig.l. Unfortunately little is known
on the behavior of H(ls) atoms produced through dissociation
of H, molecules.

Very recently a technique has been developed for measuring
the energy distribution of the dissociated ground state
hydrogen atoms, based upon the deflection of these atoms in
non-uniform magnetic field due to their magnetic moment.

2. Atoms in the excited states

If the product hydrogen atoms are in the excited states,
H(n,¢), they decay into lower states, resulting in the
emission of photons. By looking at these photons, more
precisely by observing the Doppler profiles of the photons
from these atoms, the velocity and kinetic energy
distributions of the product atoms can be known3) (see Fig.2).
The energy distribution of the metastable H(2s) atoms from
the process

e + Hy » Hpy** » H*(2s) + H*(n,?) (II-2)

was investigated by Leventhal et al.?) who showed a single
slow component with the average energy of 0.21 * 0.02 eV and
two fast components with the energy of 2.3 * 0.5 and 4.4 +
0.9 eV at the impact energy of 60 eV which were observed at
13° with respect to the electron beam direction. Their
results show that the slow component does not change with the
observing angle, whereas the fast components do change
significantly with the angle. Thus in contrast to the above,
for example, at 90° only a single peak corresponding to the
energy of 4.7 * 0.7 eV has been observed. More detailed
analysis was made by Spezeski et al.?) The slow component
originates from the attractive singly excited states such as
BlEu+,B“2u+,e32u+gE12g+and.a32g+. On the other hand, the fast
components are found to originate from doubly excited,
repulsive states. It is inferred from their results that at
least two repulsive states with different sysmmetries such as
(2po) (250)1'32u+ states contribute to the fast components.

—11 -



No quantitative studies on the energy distribution and
angular distribution of these components have been reported.
The following particular process

e + H, » BHY + H'(2s5) (II-3)

has been investigated by the coincidence technique between
proton and quenched Lyman - a radiation.® The kinetic energy
of H(2s) atoms is estimated to be about 4 - 8 eV with a
maximum at 5.8 eV, in agreement with the work of Leventhal et
al.?) and concluded that these H(2s) atoms originate mostly’
from ZSOg with a slight contribution of 3po, state. Based on
their results they tried to determine the potential energy
curveé for these states. However, no cross section was
given.

The state-selective dissociation process

e + Dz + D*(2p) + D*(2p) (II-4)

has been studied by the coincidence between two Lyman - a
radiations. These atoms in the 2p state originate from the
doubly excited states through dissociation. The cross
sections for the above process is estimated to be 6 x 10720
cm? with uncertainty of a factor of two at 200 eV impact
energy.7’ This small cross section can be understood from the
fact that there are other competing exit channels, such as
autoionization and highly (singly) excited Rydberg states.
Hydrogen atoms in the n=3 states produced through the process

e + Hy -+ Hp** » H*(n=3) + H*(n,?) (1I-5)

are found, by observing the Balmer-a lines, to have two
components in their energy distributions®): one is the near-
zero energy (with the average energy of 0.2 eV) produced
through predissociation of vibrational excited states such as
1s0q state or Rydberg states directly dissociated and the
other one relatively high energy of 7 eV produced through the
repulsive doubly excited states such as 2poy. It }s

—12 —
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interesting to note that these Balmer lines originate mainly
from 3s and 3d states.?) However, no quantitative
measurements of this process have been reported.

By observing the Balmer-f lines, similar investigations on
the production of H(n=4) atoms through the process

e + Hy + Hp** » H*(n=4) + H*(n.¢) (II-6)

can be made and it is found that there are three components
at zero, 4 and 8 eV, whose threshold energies are 17.1, 24
and 27 eV, respectively.l0) Their production mechanisms are
very similar to those for H(n=3) atoms.

The situations are similar in production of H(n=5) atoms
through the process

e + Hy »+ Hp** » H*(n=5) + H*(n,¢) (II-7)

where three components are observed: zero, 4 and 7-8 eV, with
the threshold energies of 17.5, 26 and 26 eV. At lower
energies, a peak for high energy component is located around
4 eV and with increasing the impact energy the peak shifts to
8 eVll), This fact suggests that many channels contribute to
production of atoms. 1In principle the angular distributions
of their intensities and of their energy can be inferred from
measurements of Doppler profiles of the photons as a function
of the observing angles. However, no such experiments have
been carried out. 1In fact, the Doppler profiles are found to
be dependent not only on the kinetic energy and angular
distribution of these atoms but also on the polarization of
the photonsi?),
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III. Protons from dissociative ionization of H, molecules by
electron impact
Proton production from dissociation »>f H, can be understood
from Fig.i where some important potential energy diagrams of
H,, H,* and H,2* are shown!). Looking into Fig.l, the expected
energy distribution of protons from the process

e + H, > H* + H'(n,¢) (III-I)

can be inferred as shown on the left side of Fig. 1. There
are two main components: the first is protons which originate
from the transition to 22+g of H*2 and have peak intensity at
near-zero energy and the other protons which originate from
the repulsive 22+g state of H*z ions and from other repulsive
states of the excited H2+* ions and therefore have broad
energy distribution peaked at the energy of 8 eV, suggesting
more contribution from a number of other channels.

Before going into the detailed discussion of the energy
distributions and angular distributions, it is important to
know contribution of protons to total ions froum H, molecules
by electron impact?). At the impact energy lower than the
threshold of transition to 2E+ustate, protons mainly come
from 22+g state. Crowe and McConkey?) determined the rat.ios
of protons to H'*2 ions which increase roughly linearly with
the impact energy up to 0.015 at 25 eV from zero at the
threshold of 18 eV, approaching the ratios in photon impact
(see Fig 2).

The angular distributions of these zero—energy protons are
essentially isotropic up to the impact energy of 25 eV, with
a forward-backward asymmetry due to the momentum transfer(*
20% at 22.3 eV with respect to that at 900, see Fig. 3),
agreeing with the Dunn prediction for 2+g-2+gtransitions4).
As the energy of these protons from 22+g state is of the
order of rotational energy of H, molecules (0.02 eV), the
observed angular distributions of these zero-energy protons
could be smeared out and become isotropic, even if initially
anisotropic. As their energy is also comparable to the

- 17 -



thermal energy of H, molecules, again the initial, if any,
anisotropy tends to be smeared out.

Then, Rapp et al.5) determined the fractions of protons
having the energy higher than 2.5 eV by applying the
retarding potential and found that these high energy protons
(Ep>2.5eV) consist of roughly 7% (maximum) of total
dissociated protons at the impact energy of 120 eV,
decreasing with increasing the impact energy (see Fig.4).
Note that total protons consist of roughly 10% of total ions.
The energy distributions of high energy protons from H,
molecules were measured by Crowe and McConkey®) who revealed a
number of peaks: those at the energy of 1,2,4 and 8 eV (see
Fig.5). The spectrum, where all the peaks seem to have some
shoulders, suggests more channels might contribute to the
production of protons. These peaks can be explained to be
due to a series of the channels located between 2E+g and 2E+u
states (see Fig.6). The intensities of these peaks change
féirly significantly with the impact energy (see Fig.7). At
the energy higher than 50 eV, the peaks at 8 eV become
dominant, though the detailed distribution of the proton
energy depends on the observing angles. It should be,
however, noted that these structures in the energy spectrum
observed by Crowe and McConkey were not confirmed by
Kallmann’). .

As mentioned above, the angular distributions of protons are
dependent on the impact energy and also on the proton energy.
Generally speaking, at low impact energies the distribution
shows the forward-backward enhancement with a minimum at 90°
and at the energy around 100 eV becomes nearly isotropic and
at further high energies, say above 300 eV, the intensities
become maximum at 90° with forward-backward redustion, though
this asymmetry is not so significant as that at low energies.
Some examples are shown in Fig.8 where the angular
distributions of protons with the energy of 8 eV are given
for different impact energies over 50 - 1500 eV!). These
observed distributions can be understood well by the Born.
calculations by Zare®). According to his theory, the
anisotropy is -found to be large for high energy protons and
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confirmed experimentally (see Fig.9)7). This is supported by

van Brunt?) who observed the variation of the angular

distribution in proton energy at different angles, suggesting
that the peak at 8 eV should have stronger anisotropy,

compared with those of lower energy protons. Similar
observations were also reported by Crowe and McConkey®) whose
spectra indicate that peaks with lower energies (2 and 4 eV)

are relatively isotropic.
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IV. Double ionization of H, resulting in production of sz*
ions

The doubly charged Hz2+ molecular ions are dissociated
through the repulsive 2po state:

e + Hy » Hy2*» gt + B, (IV -1)

Then, the resultant two protons are emitted with high
initial kinetic energy. The coincidence measurements
between two protons dissociated into the opposite directions
givé information on this process. The measured energies of
these protons range from 6 to 14 eV peaked at 9.4 evl) (see
Fig.1l) and found not to change very much over the impact
energy of 0.5 - 1 keV, The relative cross sections for
double ionization are found to decrease with increasing the
impact energy in this energy range, similar to trend in
ordinary ionization of atoms and fmolecules. No direct
determination of the cross sections of double ionization by
electron impact has been reported. From their experimental
information, the cross sections are estimated to be of the
order of 10720 cm? which seems to be in agreement with those
in high energy proton impact?) and in photon impact3).
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V. Remarks on further AM data

In the edge plasma modelling, more AM data may be necessary.
Some of them are described below.
1. The life times of the excited states

Some of the excited molecules have relatively long life
times ( metastable ). They play’a role in high density
plasma edges where ionization / excitation of such molecules
or ions is enhanced. In the followings are described the
life times of some states :

b3n,* state : 10714s , dissociate into H(ls) + H(ls)

B1Z,* state : 10-10s , decay into the ground state
(x1Zg*) via the allowed
transition

a329+ state : 1078s , decay into b®I,* state via the

allowed transition
c3Iy (v=0) state : 1073s, decay into b 3Z,;* state via

the forbidden magnetic dipole
transition

c3, (v#0) state : 107%s, decay into a3Zg* sstate.

Some of these long—liyed molecules should have the decay
length of the order of meters comparable to the experimental
devices in low density plasmas or should have more collisions
before decaying. Thus the balance of ionization of plasmas
may be affected by the presence of such metastable molecules.
2. The collisions (ionization, excitation, deexcitation)
involving species in the excited states

Generally the collision cross sections involving atoms,
molecules or their ions in the excited states are expected to
be significantly large, compared with those for the ground
state species. Such data presently available are very

limited. The cross sections for formation and destruction of
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such species in the excited states have also to be known. ~
Furthermore, these cross séctions involving collisions with
surfaces, which are scarce, are requisite for modelling of
the edge plasmas. '

3. The electron distributions in energy and angle (double
differential cross sections)

These double differential cross sections (DDCS) for
electrons from H; targets have been measured by a number of
the investigators. The features for DDCS depend on the
particular ﬁrocesses. For example, some have strong
dependence on the angle and on the collision energy. The
observed features in general agree among experiments.
However, the absolute DDCS are sometimes in significant
disagreement with each other. 1In particular, those for low
energy.electrons differ by one order of the magnitude among

different work.
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Corrections to IPPJ-AM-46 (1986)

- “Please replace Figs:l, 2 and- 32 with new figures enclosed-here. . -

and make the following corrections :

pP.51,%.14 ; remove ''significant".
pP.76,2.22 ; photon energy from threshold -

photon energy up

P-76,%.26 ; 2pmu > meu
p.77,4%.1 ;5 6.89 > 6.9
P-77,4%.2 5 add at the end. at 300 K
p-80 ; caption in the figufe
H;(K)+ hv H;[T(K)] + hv
p.133 ; unit in the ordinate
cm3 - , cm6
g ' ‘ .
AR EYIVES TN B NSt IS FOR Y,

+

" incorrect correct
o P.652.3 ;2 +H +H » 2¢ + H  +H / 3e + H + H"
- .
p.8,2.3 3 H3 + H2 > H3 + H2
p.18,2.12-13; Figs.5-7 and 9-13 -~ Figs.5-11 and 13
p.40,2.6 5 eq.(3) > H* + H" + 3e
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