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Preface

Heavy ions and laser beams of high power densities are the
main drivers to produce extremely high temperature and high
density plasmas which would eventually lead to the nuclear
burning. The studies on hot dense plasmas are particularly
important to diagnose the plasma and investigate radiation
heating or cooling mechanism in it. Experimental data on atoms in
dense plasmas, which have accumulated rapidly, also require the
knowledge of fundamental characteristics of atoms immersed in
plasma for their analysis. Up to now, many theoretical
investigations have been reported on an atom or a few-atom
cluster in plasmas. In this article, we are intending to review
those studies with a hope of providing new comers with an
introduction to those problems. With the maximum effort, however,
we have to leave some important aspects of the problem
undiscussed. The references given at the end of this article may
provide necessary information.

In the introductory section I, a fundamental method of our
approach to the atomic states in plasma is stated. This is
intended to make our standpoint adopted in succeeding discussions
clear and cast the light on the problems which are usually left
undiscussed. Many of the readers may feel that atomic models
which appear in the succeeding sections do not follow this
scenario. However, what we are insisting in this article is
nothing but this inconsistency of the conventional theories.
Section II deals with a hydrogenic atoms in plasma in terms of
classical model potentials. These model potentials introduced in
this section are also used in the following sections. we devote
section IITI to the discussion of Thomas Fermi Models at finite
temperature because of their simplicity and wide application.
Quantal treatments of the problem are discussed in Section IV.

We strict our attention to the atomic models "in plasma and
do not intend to go into the elementary processes, such as
collisional excitation and ionization by electrons, charge
transfer process and so on. The guantitative understanding of
these mechanisms are now becoming to be an urgent problem for the
design of a nuclear fusion reactor. We hope a review article by
Karashima et a1,1) which is one of the IPP reports, on "Theories
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of stopping power for hedvy particles in hot and dense plasma',
will cover a part of these problems.



3 | Introduction

In general, physical properties of matter can be classified
into two categories, 1i.e., macroscopic and microscopic
properties. The microscceopic phenomena, such as X-ray emission,
absorption, atomic collisions accopmanying charge transfer,
ionization and excitation of electrons, are described fairly
well, in many cases,; by considering a single atom or a small
molecule, even though the actual atom or molecule is immersed
in continuous media. However, this treatment is inadequate for
the calculation of the egquation of state, electronic
conductivity, and energy and heat flow and so on, because these
are concerned with the macroscopic properties of the matter. The
same is true for the high density and high temperature plasmas.
As is indicated by the title of this article, here we focus
mainly upon the microscopic properties of hot dense plasmas based
on atomic models.

Suppose a plasma is defined as a medium composed of positive
and negative charged particles moving almost freely but still
interacting each other and its state is defined only through the
macroscopic physical quantities. These gquantities, often called
plasma parameters, are expressed by the language of statistical
mechanics; that is, an average of the operator over the grand
cannonical ensamble. Atomic process takes place under the
physical condition which is controlled not by the microscopic
parameters but by the macroscopic ones. This means that when we
study atomic process in plasmas with certain plasma parameters,
we should always reduce them into microscpic conditions. On the
contrary, if we intend to estimate the thermodynamic properties
of the plasma, we need to know eigenstates of the system for the
purpose of calculating the partition function or interaction
Hamiltonian between almost free particles or quasi-particles and
to perform the perturbation expansion. (This statement may sound
misleading. We do not necessarily need the eigenstates of a
system to calculate a thrmodynamic gquantity. Computing a trace of
an operator with any infinite Fock space is enough; the result
should not depend on the choice of the space. However, since it
sometimes turns out to be impossible to calculate the trace with

infinite basis, we have to use a finite basis as an
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approximation. For that'purpose, a s2t of accurate eigenstates
should be known. Reference 2 yives a discussion about this
point.) ,

So, the study of atomic properties in hot dense plasmas is
important for the two reasons; for the analysis of elementary
processes in the plasmas itself and for the basic research of the
other properties which can be obtained as a result in statistical

averaging.

Now we look at some of the important properties of an atom
in plasmas. As a representative example, we start the discussion
with an X-ray emission spectra in inertial confinement
experiment using high power laser beams. Figure 1 showsaspectrum
of silicon atoms in yglass a amicro balloon obsarved in the
inertial confinement fusion experiment. As is seen in this
figure, the observed spectrum usually exhibit sharp emission and
absorption lines, The sharpness of these 1lines suggests that
the atoms which radiate these X-rays are in ionic states which
ara not so much different from free ionic states. Actually,
these lines can be, in most cases, assigned easily on the basis
of the energy-level diagrams of an isolated highly charged ion.
Though the dominant features of the spectrum are similar to that
of a free ion, some differences are found from the isolated ion
spectrum which are due to the effect of high density and high
temperature circumstances. A‘?%%eful investigaton of the
optical spectrum provides us detailed information about the
electronic states of the plasma,

The first difference appears in the energy of the lines.
This is due to the changes in the degree of the electron screening
of the ion core charge. The amount of the energy shift
corresponds to the plasma density and temperature through this
degree. Estimation of the line shift by using the plasma
parameters is one of the main purpose of this research.

The second is the lowering of Rydberqg series liimit. This
effect is often called as continuum lowering and is interpreted
in the following: when the plasma becomes dense, highly excited
states or Rydberg states lose their discrete properties because
other neighboring ions come and fall inside the orbital radii

of the Rydberg electrons. These orbitals cease to be atomic and
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Fig. 1 Xray spectra of Si ion emitted from glass micro balloons. Maximum compression
estimated is 20 g/cm® at 200 eV for the spectrum (a) and 50 g/cm? at 50 eV for
(b) reprinted from N. Miyanaga, Y. Inada and Y. Kato “Annual Report on Laser
Fusion Program™ JIE. Osaka Univ. 42 (1979).



they are treated as the molecular or band-like orbitals which are
realized in the s0lid state. Accordingly, tha peék which
corresponds to a transition from thesz orbitals becomes so
broad that the spectrum becomes guasi-continuum. This phenomenum
looks as if the ionization limit is lowered. The details will be
discussed later.

The third feature found in the spectra is the existence of
broad peaks. These broad peaks could result from the convolution
of sharp peaks with an instrumental function of rather poor
resolution. There is yet another possibility that wavefunqtions
concerning these transitions depart appreciably from the
discrete atomic ones. They may be delocalized orbitals or the
band-like orbitals like those in solid state. The Doppler-
broadening will enlarge the half width, too. Their analysis is
rather complicated. Since a time-resolved observation of the X-
ray spectra is very difficult, we can not expect to ohtain more
detailed information from experiment. At present, we do not know
much about these wide peaks. The study of them has just started
taking the delocalized or molecular orbitals into consideration.

Anyway these spectra contain the information about how high
the plasma temperature is and to what extent atoms in the plasma
are ionized. In order to answer these questions, tha one-electron
energies of initial and final statas and the transition
probabilitiés between them should be known. To the first
approximation we need only the wavefunctions of electrons which
interact with photons. Accordingly, the practical requirement for
electronic state in plasma is to obtain a suitable effective
potential in the Shroédinger equation and boundary condition of
wavefunctions.

Here we use a word effective potential without any
definition. For hydrogenic atoms in a plasma, which wil® appear
in section II, its meaning is rather clear. The effective
potential for a core electron is the result of the interaction
only between the bound electron in question with other free
electrons and surrounding ions. This iamplies that the state of
free electrons and the interactions between ions are not affected
much by a slight change of a core state. However, the boundary
condition of the wavefunction is not so clear. In the isolated

atomic case, the boundary condition of the wavefunction is zero
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at infinity. Since the atom ip guestion is in plasma, the
wavefunction which has a large amplitude at the neighbouring ion
is questionable in its reality.

In order to make our problem clear it would be better to
start with the general description of the problem.

In hot dense plasma an atom is surrounded by many ions and
electrons move rapidly. Therefore, we can not néglect the
interactions between the atom and these surrounding ions and
electrons. If we try to calculate the atomic states, the motion
of ions and electrons should be known; in other word, we need to
have the knowledge about the correlation bstwz2en the atom and
ions. For this purpose, electronic states of the atom should be
known. Therefore we have to repeat the same procedure without an
end. An ideal approach would be to solve the problems of atomic
states and of the motion of ions and electrons at the same time.
However, since this results in an extremely complicated problen,
the motion of the ions are, in many cases, supposed to be solved
in advance and represented in a statistical way in the course of
the calculation of the atomic problem. This is equivalent with
the assumption of separability of nuclear and electron

coordinates for the total wavefunction.

Let's write the Hamiltonian of N electrons and M nuclei

systemn,
2 2 ZZ. VA
1 1 1 ﬁ 1 iJ k
H= — — 24 - E +[___§v2+..§_.___.]_§ (1-1)
k
2me v 2 ==)‘l —-rAI my 2i==j|Ri"le v,krv"'Rk

where 1r and R stand the position of electrons and nuclei,
respectively. We use Atomic units without otherwise noted. The
Shrodinger equation can be written as,

iéﬂiﬁ—:f—)—:H‘P(nR:t) (1-2)
dt

If an appropriate initial or boundary condition is given and the

Shroedinger equation can be integrated, then the plasma

parameters can be calculated by using the partition function.

Since this approach is practically impossible as mentioned above,
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we assume that the total wave function is s=z2parable into

wavefunctions of the electron and those of the nuclei, ‘i.s.,

Y,R )=¢(,t)PR,t). (1-3)

Our present problem is not to obtain the motion of nuclei
but to calculate the electron wavefunction. In most cases we
suppose {O(R,t), which represents the motion of nuclei, is known.
Removing the terms of the kinetic energies and potential energies
between nuclei, the time dependent Hamiltonian for the electron
system can be written as

= - py = 2 B (Al (1-4)
el = 2m, <V 2 ol Iry —rpl p’k‘ru—Rk(tH

where Rk's are given by the IP(R,t). Here in Eq. 1-4, nuclear
coordinates are assumed to be expressed in semi-classical way and
are included into the'Hamiltonian only parametorically.

Nuclear motion may affect the electronic property. Its
contribution depends on the time scale of the process which are
considered. For a hydrogen plasma at temperature 10 keV, the
average speed of nuclei is about 0.6 a.u.. Since radiation and
absorption of photons are usually very fast processes, the time
dependencé of ¢(R,t) can be considered as static. This
corresponds to the assumption that each electron forgets what ion
it originally has belonged to. However it is a well known fact
that, for processes like charge transfer, collisional
excitation and ionizafion, the motion of electrons with raspect
to a particular nucleus sometimes plays important roles when the
collision velocity is larger than unity.

Apart from the time dependence of R(t), the Hamiltonian at
this stage is that of a familiar multielectron multi-center
system. Since this problam itself is an extremely difficult
task, we must make some approximation. Three kinds of
approximations are commonly used in which one can take the
contributions of nuclear potentials into consideration. Since the
regularity or periodicity of atomic configuration (Rj) can not be
assumed 1in the plasmas, the first one emphasizes this

—8—



irregularity or randomness of the atomic configuration. The
Coherent Potential Approximation (CPA), which is often applied to
the random system such as amorphous, is an efficient approach.
Kishimoto and Mima havs applied this method to neon plasmas. The
second is the method to take the time average of the ionic
configurations. Many workers can reduce the potential can be
reduced into spherical ones by this method. The Debye-Huckel,
Ion-Spher2, the Stewart-Pyatt models and more elaborate ones are
widely used for this purpose. The simplest one is to assume the
regularity of the atomic configuration for the plasma even though
it is considered rather far from the reality. The muffin-tin
Thomas-Fermi model and an approach bas=d on DV-Xg balong to this
group. Theories of the first and the third groups include the
features that electrons can move around every ions in plasmas
resulting in the binding nature between the ions. However,
approaches based on the second group usually neglect this effect.

The contribution form the ions is approximated to be
spherical symmetric, then the Hgq reduces to

2

i 1 1
H =[__._ §v2+v(r)]+_ E —— (1_5)
el 2m v v 2 h:per —rpl

Even in this approximation Hamiltonian is still that of
multielectron problem. If all the electrons in the system are
assumed to be in bound states ancd if we do not mind the amount
of calculation, there are some possibilities to carry out the
integration of the Shroedinger equation. However, it is difficult
to calculate an accurate wavefunction of multi-excited state with
the present ability of computational method.

To separate the electronic wavefunction into the parts of
free electron and bound ones is one of the practical ways, though
this gives rise to a new problem: i.e., how many electrons are
in tha hound states . Under this approximation, the Hamiltonian
in gquestion is in the form

2

fi 1 1
H, b= — N vVZhev _(1+c (1-6)
e 2m | ctound © N 2 v\ €bound vl
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The potential Veff(r)'in Eq. 1-6 now includes the interaction

between the bound and free electrons. ..

Average Atom model and Quantum Cell Model are based on this
Hamiltonian or its relativistic form and we solve the Hartree-
Fock or Dirac equationé. Going into further approximation, we can
neglect the shell structure of atoms and molecules. This leads to
the idea of the Thomas-Fermi or Quantum-statistical Models.

Here we summarize the difficulties encountered when we solve
the problems of atoms in plasma. First, the motion of
surrounding ions can not be taken into account in an ordinary
framework of treatment. Second, if ions'are coasidered to be
fixed in space, their configuration is random. So, we can not use
the familiar idea of the 'unit cell' as in solid state physics.
Accompanying to this point, the boundary condition of the
wavefunction can not be clearly defined. Third, the system has
many ionized electrons. This makes the problem more difficult.
We can not distinguish free wavefunction from bound one when
Hamiltonian of the system is approximated and the boundary
condition can not be definitely stated.

—-10—



I Classical Model Potentials and Hydrogenic Atoms

:

Three theoretical models presented in this section treat the
motion of positive ions and electrons classically. The first one
is the Debye-Huckel theory which is valid for high temperature
and low density plasma (i.e., the ion-coupling parameter [7<<1,
is the ratio of kinetic energy of ions due to thermal motion to
the Coulomb potential between them. If the effective charge of
the ions is 2¥, [7is written as (e2)2/Ry,T). The second model is
the Ton-sphere model. This model is useful when [7 exceeds unity.
The final model is called the Pyatt-Stewart model. This reduces
to the above two models at the two axtremes of [7. By éeparating
the bound electrons from the free ones, this model lead us to the

concept of so-called "continuum lowering'.
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II-1 Debye-Huckel Model

IT1-1-A Debye-Huckel Model Potential

Let ng(r) and nji(r) (i=1,2,...N), be the number densities of
electron and the i-th positive ions of charge zZ; at position r.
These particles are in thermal equilibrium at temperature T.

. The electronic potential V(r) for an electron around a

positive charge Z; satisfies the Poisson eq.
VW)= —4ne(D Z;n, (") = n () +Z,8()). (2-1)
i

where éhﬂ stands for the three dimentional delta function.
The charge neutrality condition of the system is written as

N
D Zn(®)=n,(=), (2-2)

where nj(0) and ng(0) are the density of the ith ions and
electron at infinity, respectively.

At the high temperature limit, both 2lectrons and ions are
in Maxwell distribution,

(2l

n‘.(x‘) = ni(°° )exp(ZieV(r)/kBT),
. (2-3)
n.e(r) = ne(w )exp(-eV(r)/kBT).

If f}: 1/(kgT) is small, Eq. (2-3) can be expanded in the

form

n,(r)=n,()[1+ BZ,eV(r)],

n,(r) =n ()1 -peV(r)]. (2-4)

By substituting Eq. (2-4) into (2-1), we obtain the Poisson
equation for the system,

—-12-



Viv(r) = 4ne(z n'.(°°) Zi—ne(°"’ ))
i (2-5)

+4neZg(r) = 4ne* () Zin (=) +n (=)V(r)
13

The first term in Eq.(2-5) is zero from the neutrality
condition of Eq.(2-2). A relation ng(x) = Z Z; (o) reduces Eq (2-
5) into v

V) = —4nBe22 (Z?+Z‘.)ni( @ ) +4neZ08(r) .

i (2-6)
Let the Debye length D be defined as follows
-2 2 2
D™% = 4npe (Y (2 +Z)n (=), (2-7)
3
then the electric potential V(r) is readily obtained
(2-8)

V(r)= -—Zoacp(— riD)/r.

The Debye length is a ineasure of screening of a pure Coulomb
potential Zg/r. D is small at low temperature and/or the product
of ion-density and its charge is large. Since most electrons are
ionized in high temperatu're plasma, charge Z; isusually larger
cthan unity. Neglecting the Zj term in Eq. (2-7) and putting 57 Zi
to Z*, the Debye length is written as v

D~%= 4n[ie2Z.2ni(°°)- (2-9)

Using the ion-coupling constant r7 and the average ion

distance Rg (=(3/4 ni)"1/3, D is expressed as

i

D = ROI(SI‘) (2-10)
If [7 value is the order of unit , the Debye length is roughly

equal to the average ion distance Rg. When Rg is larger than D,
we can not assume ions are in Mazwell-Boltzmann distribution.

This wviolates the assumption of Eq. 2-3. Therefore the Debye-
Huckel model breaks down for[7>1.

—-13 -



II-1-B Hydrogenic atom in Debye-Huckel potential.

Harris3) has calculated the energy levels of a hydrogenic
atom in a Debye-Huckel potential by the variation mmethod by
using the unperturbed hydrogenic wavefunctions as a basis set.
The total Hamiltonian is assumed to be the sum of fthe kinetic
energy of a electron Hj; and the Debye-Huckel potential V(r)

HH=E%4-V&)
(2-11)
Jp2 ez
Ho = — ,V(r)= — —exp(—~r/D)
2m r

where the D is the Debye length defined by (2-9).
-2 _ 2 2
D™% = 4nf Znizi €

The eigenfunction) of this atom is assumed to be written

as the superposition of Hydrogenic wave function 4) n,l(r'e'¢)
with the variational coefficients aj ;

br = 3 o ,0,0.0) | (2-12)

n

Since the analytical forms of the basis functions are known, the

overlap and Hamiltonian matrix elements Sij ( =<¢i “#j” and Hi4
=<¢ i[HO |¢j> ) , respectively, can also be calculated

analytically. By diagonilizing the secular matrix, coeficients
LI

a's and the energies of the orbitals can be computed. Harris uses
basis functions of principal quantum number up to 9.

C. R. Smith4) applies a perturbation formalism to calculats=z
the bound state energies in the Debye-Huckel potential. He writes
the Hamiltonian of the system as the sum of unperturbed Hy and
the perturbation part H', i.e.

— 14—



H = H0+H’
(2-13)

2
r r2 r

+1].

The perturbation energy to the first order for the (n,l) orbital
is

AE = <an.,:l|H'l Rn,1>

2 (2-14)
) 9 .

2

223 (4 DI F, (—n+l+1, —ntl+1,2042 ,4D%/n

nZt4©QI+ 1)1 (n—1+1)1 2/ n+1 /D) PP~ 22 n

Smith presents the expression up to the second order of the
perturbation energy in his paper.

His remarkable conclusion is as follows. If perturbation
energy is expanded in (1/D), Eq. 2-14 will be approximated by

= —2/(D+n?). (2-15)

From this equation, we can sstimate the maximum priacipal quantum
number of the highest bound state g2. g2 should satisfy the

inequality
2
g <D {(2-16)

The other approach for the bound states in the Debye-Huckel
potential was made by F.J.Rogers et al.5) They choose a straight
forward way of solving the wavefunctions numerically for the
Debye-Huckel potential.

Though there are several differences among the results of
these authors, followings are the common features for the bound
states of an atom in the Debye-Huckel potential.

The energy shifts of bound states as functions of the Debye
length D are shown in Figs. 2 and 3. The units of the horizontal
axis are inverse proportional to the Dehye length, i.z.,

§ = ay/D (2-17)
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Fig. 2 Energies of s-type orbitals for a hydrogenic ion in Debye-Huckel potential. (ref. 3)
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-17--



i

|

|

Fig. 4 Radial wave function 3p of an ion in Debye-Huckel model potential. DZ/a, = o

corresponds to unscreened potential. (ref. 5)
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where agy represents the Bohr radius. The vertical axis shows the
calculated energy normalized by that of an isolated hydrogenic
atom, i.e., Ejy = 1/2n2- From Figs. 2 and 3, we can see that the
states of a large principal quantum number gain their energy with
the increase in the screening charge or decreasing S .
Accompanying to the energy shifts, the radial wave functions
diffuse outward. The typical example is shown in Fig. 4. With
the increase in the screening, the peak value decraases and the
electron density flows out.

Since the energy levels are shifted upward with the
decreasing D, the number of bound states becomes small. Figure 5
illustrates this feature. This shows that the relation between n*
and D is almost linear, as is suggestad by Smith. The number of
bound state g* is expressed as

g* = a; + ay2zD/ag (2-18)
the parameter a4 and ajp are obtained by a fitting and are

summarized in table 1.

Dipole transition probability between the orbitals in Debye-
Huckel potential is calculated by Roussel and 0'Connel16) using
the numerical basis function obtained by the use of the variation
method. In their original paper, there are complete sets of the
table of the energies obtained. The dipole transition
probabilities are calculated in the length form. Figure 6 shows
the the ratio of the transition probabilities of an atom in the
Debye-Huckel potential to an isolated atom. When the plasma
density increases (i.e., The Debye length becomes small), the
transition matrix elements decrease because the energy difference
between the initial and final states becomes small.

These calculations have been done for Hydrogenic ions in
plasmas. It is ofcouse possible to solve the multi-electron
problem in the Debye-Huckel potential. Helium likes ion in Debye-
Huckel potential have been studied.”?)

ITI-1-C Some Problems

As mentioned above, an atom in the Debye-Huckel potential

has only finite number of bound states. However, there arise a
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question if all these bound states are well defined. The averayge
radius of these bound electrons should be less than the avarage
ion distance. If it were not the case, we must consider the
mixing of the wavefunctions between ions. In a rough estimate,
the average radus of n orbital <r,> can be

express as
Z*/n2 = exp(—(rn)/D) /<rn)» (2-19)

if <xrp> exceeds the average ion distance Rgps the reality of the
obtained wavefunction becomes guestionable. Maximum number of n
which satisfy this condition is plotted in fig. 7. This shows
that some of the highly excited state, which is bound in the
Debye-Huckel potential, 1lose their reality.
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II-2 Ion-Sphere Model

II-2-A TIon-Sphere Model Potential

As mentioned in subsection II-1, the Debye-Huckel model
breaks down when[7>1. At this density and temperature region, the
correlation between the ions is strong as shown in Fig. 8, The
Jon-Sphere model approximates the pair correlation function in
Fig., 8 with a step function. This approximation is often statad
that a positive ion defines its own territory into which other
positive ions can not enter. Let Ry be the radii of this
spherical territory and call the ion-sphere radii. Since
electron-electron correlation is strong too, the electron density
ne 18 supposed to be constant. The charge neutrality condition

determines the electron density inside the ioa-sphere, namely

n, = 3Z/(4naj) (2-20)

Here, we use the word 'Ion-Sphere' to identify the models
which is based on the maximum idealization of ion-ion and
electron-electron pair correlation functions. However, in somsa
casa2s, the ion sphere model is referred to the treatment which is
similar to the one based on the Wignér—Seitz cell: but this is
not the case. The confusion over these two different ideas
sometime causes troubles. Therefors we will note what ions-3sphersas
means each time when this may happen.

The electronic potential V(r) at position r satisfies the
Poisson eq., .

1 d®
_.._2(rv(,-))= 4n[ene-e26(r)]. (2-21)

r dr
The boundary condition for the ion-sphere model potzsntial V(r)
is defined from the requirments that V(r) is purely Coulombic in
the vicinity of the origin and the electric force is zero at the
surface of the ion-sphere.

Vir)=-2,/r forr=0.
(2-22)
%V(r)::(), atr=R0 ,
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With these conditions, The Poissqn eq. (2-21) reduces to the form

eZ eZ r 9 eZ
—_ e — —_— ) —]. -
v P ZRO[(RO) ZRO] (2-23)

II-2-B Hydrogenic atom in Ion-Sphere Potential

Energy levels of hydrogenic atomnms in an Ion-Sphere like
potential are calculated by Skupskys) and Yamamoto et al?).
Sskupsky applied the perturbation method to 1s and 2p of a
hydrogenic atom and pointed out the energy of the K; X ray
shifts always to the lower energy side when the ion-sphere radius
becomes small, or when the ion density becomes large.

Suppose hydrogenic wavefunctions of 1s and 2p with the
orbital exponents §1s and { 2p are

¢, = (g 3/m)Pep (=G, ),
- (2-24)
¢2p == (ng /a) e:cp(—(zp r) .
The energy shift AE of the 2p - 1s optical transition in the

Ion-Sphere model is

AE = <2p1V’'I2p> — <1sIV'Ils>

where,

zZ r z
Vi — (=) - =) (2-25)
2R0 To ZRO

A little calculation gives

(2-26)
If T1s = Zag and $2p = Zags AE is written as

AE (evV) = 3.67 x 1022 n_(cm~3)/22

Skupsky extended this calculation and made it into self-
consistent approximation.

Yamamoto also usss tha perturbation approximation and
calculated the energy shifts. The intceraction Hamiltonian of a

hydrogenic ion in Ion-Sphere of radius Rg is
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Fig. 8 The pair correlation function. The broken line shows the results by the Ion-
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AZ-1)/(4nR ) for r<R
, _ 0 ()} (2-27
ar’, n (r) = [0 r>R, )

=g

o |r=r|
The perturbed energy En,1 for the hydrogenic wave functions of

principal and azimuthal quantum numbers, n and 1 respectively,
are

AE , = <nllVInl>
Z—-1)é @ 2, n?

2a, R, R, 2z (2-28)

® 3 a 1 an 4
2 n 9 3 4,°'2p 2
_ 3 Tnpa, 1 = R2d
+ (Z l)e ]R ' [u 2 Rou 2 (R ) u ]an 74 u
0 n
where
u = r!an, an = na0,2Z

Figure 9 plots the energy shift of several levels against
the plasma density. When the plasma density increases evary
orbital energy goes up‘and high n wave functions vanish into the
continuum. This phenomenum corresponds to the continuum lowering
in this guantal case. However, the reality of these highly
excited orbitals, which have the amplitude outside the sphere and
thus wvulnerable to the perturbers, is questionable.

Yamamoto et al added non-spherical perturbation Hamiltonian
to this model. This additional potzantial causes a Stark shift to
the energy of the orbitals. Concerning to this effect, see

subsection IV-1.
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II-3  Stewart-Pyatt Model ,

Since the Debye-Huckel ﬁodel in subsection II-1 is valid
only for high temperature and thin plasma, the velocity
distribution of electrons can be the M .xwellian. In order to
extend this model to high plasma, the Fermi-Dirac distribution
should be used without relying on the hijh temperature
expansion.

Let's write the Poisson Eq.(2-1) again.

V2V(r) = _4n32(z zini(r)—ne+z06(r)) . (2-1)

In the present model electrons are ia the Fermi-Dirac

Distribution.

) 8-1/2

eV(r) l+exp[B(e—eV(r)+u)l

n,(r)=an (=) I (2-29)
The integration of RHS of eq. (2-29) starts from the energy at

which the kinetic energy of electron is positive.
Positive ions is in the Maxwell distribution as are same as

the Debye-Huckel model.
n(r) = n,(<)exp(—pzV(r)] (2-30)

Now we introduce new non-dimensional variables x=r/D with
the Debye-length defined in (2-7) and potential y =(3ev. Equation

(2-1) is written as®

1 d 1 _F(Y-q,Y) <Zep(-Z'Y)>
X i XN = Sl - = +e(X)1, (2-31)

where <> means the averaging with respect to ions weighted nj (0)
and 2* stands for <Z2>/<Z>. The Fermi integral F(R,Y) is defined
as

2 gt

F(n,Y =J —_— -
(n. ¥ y l+exp(t—n) (2-32)

a in eq (2-29) is the normalize constant as defined from
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2(2nm.ekBT)3'l2 2 - o) .
n ()= 3 e —E (2-33)

The final form of the Poisson eguation is read as

f

2

1 d 1 F(Y-a,Y) .
% i X0 = Ty — e (=2 e, (2-34)

This equation and the resultant potential are usually called as
Stewart-Pyatt equation and potential, respectively. The first
term of RHS in eg. (2-34) is brought from electrons and the
second is from positive ions and the third is from the central
nuclear charge.

Let's consider the solution of Eqg. 2-34 in two extreme

cases.

1) When z*Y<<1, the potential V(r) or Y is decided mainly by
the spatial distribution of the positive ions. Eq (2-34) reduces
to the Debye-Huckel equation

d® 1
-1-—(XY)= < + C(X) (2-35)
X ax? 142 .
2) When 2¥Y>>1 (i.e., Y>>1/Z*), the dominant features of the

potential are determined not by the positive ions but the
electrons. If the average charge of positive the ions 2* is much
larger than unity, F(y-a)/F(-a) is nearly equal to unity for
1/2%*<¥<1. In this case the solution of Eg. (2-34) is identical to
that for the ion-sphere potential,

1 &
= —(XY) =Y +C(X) (2-36)
X gx?
In general, condition 1 is satisfied for large x (= r/D). On
the contrary, in the limit of X = 0, condition 2 holds.

Therefore, the Stewart-Pyatt equation giva2s the Debye-Huckel
potential at infinity and the ion-sphere potential at the origin.

Now we remind that there are bound and free electrons, which
were not treated separately in the previous discussion. Let
nf®(r) and np®(r) be the number densitiz2s of the free and bound
e2lectrons, respectively. Thz potential Ve(r) felt by a free
electron satisfies the same Poisson Eg. (2-1)
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VIVI(r) = —dnel Y z;n (1) = nf (1) =m0+ 25()] (2-37)

If the density of bound electron is known, its contribution to
vi(r) can be represented by modifying the central ‘lear charge
Zg. Using a new effctive ncharge Kg thus obtained, the Poisson
Eg.{(2-37) is in the form

Vsz(r) = —-4ne[22ini(r)— ni(r)+K08(r)] (2-38)
i

Free electrons obey the Fermi-Dirac distribution and we write

@ 8—112

fean (o J de
ne=an (®)]  replBe—eVmrmi "’
(2-39)
n£(°°)=ne(°°)
The boundary condition (2-39) means that there is no bound

electron at infinity.
Jow we define a non-dimensional potential for free electrons

V(x) by Vg(r). Eq. (2-38) is written as

1 42 1 F(Y—a,0) ’
re = e eap(=ZN)+ K. 8(X)] -
z dxz(XY) 1+z”[ e P o (2-40)

The LHS of Eq. (2-40) is a function of the free electron
potential and the RHS is of the that of total electron. Froam Eq.
(2-39) the boundary condition for V is

V(w)= V() (2-41)

Let S(x) be the RHS of Eg. (2-40) with the known ¥ in Eg. (2-34):

- i (XY) = S(X)
X ax? - ’

(2-42)
1 F(Y~—a,0)

S(X) = il

=S —epl-Z Y1+ K 5(X)]
1+ —

A formal integration of the Poisson Eq. (2-42) is written as
X 1 (X .
VX) = f S(t).-:dt——J St de+dJ (2-43)
0 X Jo

A parameter J which determines the behaviour of the potential at
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th2 origin is deciaed by the boundary condition (2-41) as

w

- I S@) e = V©0) (2-44)
: 0

. Though numerical integration leads the solution v(x), we
can obtain an approximate solution in the following way.

Suppose y(x) and v(x) are connected smoothly at X1. The
ppsition of xq is decided later. For x > xq, Y is given by the
Debye-Huckel potential

Y = ge"" . (2-45)
X

For x < xqr Y is the ion-sphere potential.

X2

Y = "
6(Z +1)

k|

The conditions that both solutions are continuous and smooth at

Xq yield

X X
.1 (1+-—1-)

J =
Z'+1 2

(2-47)

X, xf
K = (1+X1+?)

o

Z +1

The connecting poinm x4 is obtained by the neutrality condition

4n[x2Yd5c=z‘ : (2-48)
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II-4 Continuum Lowering in the Three Models

With an incresase in the plaswma density, energies of the
bound states shift upward. This shift is describled in the
models introduced in this section. This effect is observed
experimentally in the X-ray emission spectrum as the edge shift
of continuous X-ray. This phenomenum is often called as
"continuum lowering" and used as a method of deﬁermining the
plasma density and temperature. Any model for an ion in screened
potentials can give an explanation of this continuum lowering but
the estimation of its magnitude is different each other.

By the Debye-Huckel model, the continuum lowering C; is
calculated by subtracting the pure Coulomb potential Z3/r from
V(r) in Eqg. (2-8).

Z ep(—-r/iD) =z
¢l = lim [—L—r—————rg] (2-49)

r—0

In the ion-sphere model, C3Vv is given by the additional term

-e%Z/2%Zy in Eq. (2-23). For the Stewart-Pyatt Model, Cj is given
by J in (2-44). (See Table 2)

TABLE 2 Continuuin Lowerings by Classical Models

Models Estimation of continuum lowering
Debye-Huckel -2o/D

Ion-Sphere -eZ/2Ry

Stewart-Pyatt -J
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IIT  Semi-Classical Treatments (Thomas-Fermi Model and its extensions) -

For atoms in strongly coupled plasmas, i.e., f7>>1, Thomas-
JFermi model is frequently used because of the following reasons.
First, this model does not assume uniform electron distribution,
while the ion-sphere model dose. Second, equation of state and
phermodynamic variables can be easily obtained in this model.
Many workers have extended and modified the original Thomas-
Fermi model which is for the zero temperature. Cowan and
Ashkinl?) derived the equation with the exchange interaction
included and valid for at finite temperature. Von Weisacker12)
and Plaskett?3) introduced so called weisacker or gradient
correction. Thomas-Fermi model with this corection is often
called Quantum Statistical Model. From the viwpoint of the
density functional method, this correction can be treated
systematically. Taking the electron density as a fundamental
variable, Honenberg, Kohn and Sham'4+15,16)  jntroduced the basic
idea of the density functional method. Marmin!7) and Pellow!8)
extended this model to the finite temperature case.

The ion-sphere model is based on the most simplest model of
the ion-ion and the electron-electron correlations. But the
original Thomas-Fermi model dose not take these into account. The
Thomas-Fermi model can describe features of atoms in plasma only
if thése correlation is stated in the form of boundary condition.
If not, the Thomas-Fermi model can handle only an isolated atom
or ion. When the ion-sphere type boundary condition is
introduced, the Thomas-Fermi model is called confined Atom
Thomas-Fermi Mbdel (CATFD). The boundary condition of Debye-
Huckel type 1is also applied to the Thomas-Fermi model. This
version is called the Debye-Huckel Thomas-Fermi Model (DHTF for
short).

Results of Thomas-Fermi model may depend on two points, one
is the accuracy of density functional approach and the other one
is the bpindary condition of TF-model which must reflect the
real enviroument of atoms in plasmas. We briefly introduce the
Thomas-Fermi model from the standpoint of the déhsity functional
method. The review article by N.H.March18) is usuful for the
detailed discussion on the Thomas-Fermi model and that by Gupta
and Rajagopall?) for the density functional method.
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1II-1 Basic Formalism

The total Hamiltonian H for an interacting electron gas at
finite temperature in an external potential V(r) is written as
the sum of the kinetic T, potential energies and the interaction
ensrgies between electrons U, i.e.,

H=T+ V + U. (3-1)

With electron wavefunction (rq, T,,ss IN)s each term in RHS of

eq 3-1 is written

f‘2
T= — I.Vql‘(r)VqJ(r) ar’,

2

V = Ity(r)‘le(r)drN , (3-2)

1 » N
U= 2 Iqx(r) u(xi—-xj)‘{’(")d’ ’

where u(x;-x4) stands for the interaction energy between
electrons.
The partion function. Z is given by

EK"“N

Z.—:.Zexp[-————-——-—-] (3-3)
K kBT

Here Ei is the energy eigenvalues of wy and jp represents the
chemical potential. N is the total number of electrons in the

system. Since the grand canonical distributionWyg is given as
EK—-pN
wy Ey) = exp[--—kB—T—]/Z, (3-4)
the density matrix is

plx, x) = we vy @)Wy ")

(3-5)

—EK—pN

ly, v (%)
kBT

= Zexp[
K

— 35—~



L)

Therefore the electron density n(r) can be written

n(r) = Tripgw w1, (3-6)

=r

Now the grand potential @ of the system becomes

Q = Trip(H~pN + %lnp)] (3-7)
If the system is in thermal equilibrium, the grand
potential § takes the minimum. The density functional method is
based on the idea that the density matrix P is the unique
functional of the electron density n(r). Correct n(r) minimizes
the grand potential . Since the density matrix is the unique
functional of n(r), the energy expectation value <H> is also
the functional of n(r).
We define F(n)

<H> = TrlpH] = I V(r)a(r)dr+ Fln(r)] (3-8)

Honenberg and Kohn13) define Gin(r)] by FIn(r)] as

1
Fln(r)l = -

. = drdr’ + G[n(r)] , (3-9)

r—r

Jn(r)n(rﬂ

Here G[n(r)] represents the kinetic energy of electrons and
exXchange and correlation interactions betweeen electrons.
Therefore G[n(r)] can be written as

G ) 1! . 1 cy(rr’) (3-10)
= - Vv - ! -
(n(] 3 vrven(,r) | oy Or+ P ] !r._r,\drdr
Now we define g,[n] by
Gin(r)]l = [ g nldr (3-11)

though G[n(r)] is a unique functional of n[r], g,[nl is not
unique. Indeed, g,[n] with an arbitrary functional hy of n[r]

3
g.n] = g.[n]+ Z a—-g—hrv[u] (3-12)
i=1 ¢

gives the equivalent results.

Suppose gp[n] is expanded as
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3
g,[nl = gy(n) + 2 g,((r)V,n(r)

i=1

+ LD (rNV. )V,

+g§‘2}(n(r))vi an(r) + ...

From the facts that g,[r] is invariant under a rotation of r and

that addition of an arbitrary divergence h,[n] g, is known to
have the form

glnl =g, +g¥ (n)(Vn)(Vn) +
+ [giz) (n) (V2 )(V7n) + gf’ (n)(Vn)(VnVn) (3-14)

+g(44) (n)(VnVn)zl +...

ggs 92 and gy are not functionals but the functions of n(r). The
second term in eq 3-14 introduces the gradient correction.
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IIT-1-a Thomas-Fermi Equation

Now we derive the usual Thomas-Fermi equation. For this
purpose we neglect the gradient term of the functional of T and
the exchange and correlation terms in eq 3-10. Furthermore, we
approximate the g, by its form of a free electron gas at zero
temperature. i.e.,

-3 2 (3-15)
g rl= E[Kf(n)] n
where K¢ is Fermi momentum given by
K, = (3a% )R (3-16)
The total energy of this system can be written as

_____n(r) n{r’) drdr’

EU = ] v(r)n(r)dr+ ‘-.12- [

r—r ( 1 )
3-17
3 (3n%)®
+ ——10 J n(r)mdr

Since temperature T is zero, the condition of minimizing E

determines the electron density n(r), namely,
6[Ev(n)—}lj n(rydrl=0. (3-18)

Eguation 3-18 yeilds

n(r')

r—r’

Vir) + ] dr' + % I(3n2)%[n(r)lm-p= 0 (3-19)

If we define the internal potential vi(r) as

_ n(r) .,
v,(r) —J lr—fldr . (3-20)

then simult%éous egs.

Vzvi(r) = —4nn(r)

(3-21)
n(r) =(@/3 nz)[Z(p—ev(r)-eui(r))]m'

are equivalent with eq. 3-19. Elminating n(r) from egn. 3-21, we
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can obtain the well known Thomas-Fermi eq., that is,

QT2
Viu.(r) = —-—--[p—ev(r)—eu.(r)]a,2 . (3-22)
3 311 13
In the Thomas-Fermi Model in the case of a finite

temperature, n(r) is replaced by

1
(Zn)3 I 1+ acp([i[p2/2m + ev(r) + evi(r)—p])

n(r) = dp

(3-23)

Here we have used the fact that the total wavefuction should be

. e . . .
anti-symmtrized because an electron is a fermion.

III-1-b Exchage interaction and Gradient correction

Approximating g¥[n] in eq. 3-14 by eq. 3-1, we obtain
Thomas-Fermi equation with the exchange interaction. An accurate
calculation ii‘) shows go in eq 3-14 is in the form

3 (a2 2B 3-24
gy = g @) te, (n) ( )

where e®C represents the exchaage and correlation interactions.

When the electron corelation is neglected, eegx is expressed as
e_(n) = —(1/m)[3n’n(r)] (3-25)

The second term in eq 3-11 is known to be the gradient
corr2latin. Comparing polalizability of the electron gas
calculated by the use of of Random phase approximation \7)
Perror shows gz(n) is written as

212 d 1 (3-26)
g'(n) = — 5B dq(Im(q))'
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where In is the standard Fermi integral defined by

dy (3-27)

1+’

In(n) = I ¥
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I1I-2 Thomas-Fermi Model with an Ion-Sphere Boundary

In this subsection we solve the Thomas-Fermi equation Eq. 3-
21 or 3-22 with an ion-sphere boundary condition. Since Eq 3-21
is a simultaneous eqgs., two boundary conditions are needed for
each n(r) and V(r).

An ion-sphere radius R, is calculated using the ion density

0
n, as
i
— 3 -

n, = (4nkt, /3) ' ‘ (3-28)
Electrons are distributed inside the sphere RO' Therefore charge
neutrality condition is written

[ n(r)dr =z (3-29)

This condition actually determines the chemical potential B
At the surface of the ion-sphere the electric force should

be zero: that is

dV/drlRo= 0 (3-30-a)

The potential is same. as that of bare ion at the origin.
V(r) = —eZ/r, for r=20. (3-30-b)

Finally, electron density must be connected smoothly with

that of the neighbouring ion-sphere. This condition is written as

dn/drlRO = 0 (3-31)
Without the Weisacker correlation, the electron density diverges
at the origin because the potential is supposed to be r—l
With the Weiszacker correlation, the boundary condition Eg. (3-
30-b) can be replaced by the electron density at the origin.
These four boundary conditions charcterizes the ion-sphere
Thomas-Fermi model. Typical results by this model will appear in

the sub-section 3-.
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I11-3 Thomas-Fermi Model with a Debye-Huckel Boundary

An ion-ion interaction has been competely simplified in the

ion-éghere—like Thomas-Fermi model in subsection III-2. Cowan and
Kirkwood20 investigated a Thomas-Fermi model with the boundary

condition of the Debye-Huckel type. Let Q*(r) be the sum of
charge densities of electrons and ions around a positive ion.

Q*(r) is written as

Q*(r) = 2ntt (N —-en*i(r), (3-32)

where n*1l and n*® stand for number densities of ions and
electrons around the positive ions, respectively.

The Poisson Eq. 3-32 for potential V+(r) felt by an
electron is

Vvt (r) = —4nQ* (1)

= —4ne(Zn't (r)=n*e(r) (3-33)
Vt(r) is Coulombic at the origin and zero at infinity, i.e.
vi(r) = —Zelr at r=20
vt =o0 at r= (3-34)

Now we assume that the thermal distribution of electrons is
the Fermi-Dirac distribution and that of ions is the Maxwellian.
That is

att = ni(e )ap[—BzeV+(r)]
n(,p) = n®(®) p,/[1+exp (B(p*/2m + eV — ). (3-35)

Integrating Eq. (3-35) with respect to the momentum p, we
obtain

n+(‘(r) -

8nezl pzdp
B ) 1+eplB(p2/2m +eV*(r) —p)]

(3-36)
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Here we utilize the fact that each state of an electron occupies
a volume hy in the phase space. ‘

The potential V+*(r) and nl*+ can be obtained by solving Egs.
(3-35), and (3-36) with the boundary condition (3-34).The
formalism mentioned above may be regarded as an extention of the

Stewart-Pyatt model (see section II-3) using the idea of Thomas-
Fermi mnodel.

The contribution of positive ions to various physical
gquentities is large for large ﬁ, that is for low temperature
plasma. In fig . 10, pv/kT ( p and v are pressure -and volume
of the systen, respectively, in this context.) is plotted
against T which is calculated by the ordinary Thomas-Fermi model
for an isolated atom and the present Debye-Huckel Thomas-Fermi
model. These show that the results by both of the models agree
each other at the high temperature 1limit , i.e when T is higher
than 100 evV.

The formalism described above does not distinguish the bound

121) proposed an

electrons from the free ones. Zakowicz et a
alternative method by which they calculated the effective charge
of the ions 2¢ff in a straightforward manner. They also pointed
out the fact:that the number of bound electrons calculated by
the Debye-Huckel-Thomas-Fermi model shows a strange behaviour.
Following their discussion, we call the electrons bound whose
energies are less than the binding energy. Electric potential
now must satisfies the equations below. (See ref. 21 for the

detailed derivation of the equations).

® 2 - +
p dp 1 —Z ne Zeﬂ.eV (r)
eff 0

vivt = 4ne[8nJ 2
0 @mi)® P
1+ep(f(—-+n))
2m

8n I” pZdp
o

=2 ()
@n#)° eff"i

2
1+exp(B(=——n))
2m

-]

@ 2p2 dp

V2meV (r)

_ 2 2
Zeff = (4n) J drr J P

0 3 p
(2nk) {1 +exp(B( — + q))}
2m
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Fig. 10 pv/kt against temperature for iron at normal solid density. Results of Debye-
Huckel and ion-sphere models are compared. (ref. 20)



(3-37,38,39)

Fig.3375 shows the fractions of the bound electrons as a
functions o0of temperature. The number of the bound electrons
increases with the increase in temperature at low temperatures if
compared with the result of Ion-sphere-Thomas-Fermi Model shown
in Fig.1l1lb The value in guestion is about 1.25 for T=1055and
n=10? cn~3. As mentioned in section II-1;, the Debye-Huckel model
breaks down at,r'equals unity. So it may leads to an error if we
use the Debye-Huckel Model at this region. However, this strange
behaviour occures for the following reasons. At high temperatures
ions have a large kinetic energy and can penetrate into the
territories of other ions. This contradicts to the assumption in
Ion-Sphere model which prohibit this penetration. The pulling of
electrons by the strong attractive Coulomb potential will surpass
their removal by thermal ionization. Zakowicz showed an
appreciable fraction of bound electrons appears at the distance
larger than the mean distance between ions. So the overestimate
of bound electron stems from the fact that the electron which are
loosely bound and easily affected by the perturbation from any
external fields( i.e., the electrons in quasi-stational state) is
regarded to be bounded. In order to get a corrct fruction of
bound electrons in the Debye-Huckel model, the definition of the
bound electron should be modified. The similar discusion is made

22)

by Carson and Hollingsworth .
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Fig. 11 Fraction of bound electrons calculated by Ion-Sphere Thomas-Fermi model (a)
and Debye-Huckel Thomas-Fermi model (b). (ref. 21)
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[1I-4 Thomas-Fermi Model for Multi-Component Plasma

The Ion-sphere radius can be calculated from the plasma
density in the case of the ion-sphere Thomas-Fermi model of one
component plasma as discussed in subsection III-2. For multi-
component plasma, ion-sphere radius for each component are not
known. They are determined by the condition that the fermi-level
for each ion is the same, in other word the chemical potential
are common to all the ion spieces. The Debye-Huckel Thomas-Fermi
model can also be extended for a multi-component plasmas. See
ref. 23 and 24 for the detail.

III-5 Thomas-Fermi Shell Model

Various Thomas-Fermi Models in the previous sections do not
distinguish the bound electrons from the free ones. The number of
electrons that are inside the sphere RO is given as

2
8up“dp
-1-I4nr2drl 2p (3-40)
A° 1+explf(p”/2m—eV+p)]

In order to represent the shell structure of atoms, we
introduce a trial electronic potential vshell(r), rLet En,l a one-
electron energy of (n,l) state with this potential. n and 1 mean
the usual principal and azimuthal guantum numbers. We apply the
Fermi-Dirac distribution for the electron population, the

probability Pn,l with which an electron is found in an (n,l)
state is

2(20+1)
= 3-41
Prt = TheplE | +u)] (3-41)

Here we suppose there are (21+1) degenerate state for the up and
down spin electrons. The number of bound electrons are written by

the sum of Pn,l
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b _ -
N°= > p., (3-42)
n,l

The number of free electrons Nf is calculated as follows.
Since Ehe minimum momentum of the free electrons at position r

satisfies the equation

2 —
12 +eV =0,
P 47 (3-43)

the lower bound of the integration of Eq. (3-40) should start

from P  (r). That is
min

2

1 2 8npdp _

Nf=—§I4nrdrI - (3-44)
5 P 1+exp(B(p°/2m—eV+u)]

min

Total electrons including free and bound ones is

If the Vgpey1 is assumed to be V(r) whcih is obtained by the
usual Thomas-Fermi models without separating the bound electrons
from free, the condition (3-45) is not satisfied. The method to
obtain a self-consistent Vgne31 and En,l will be presented in the
succeeding section, and we consider approximate solutions
following the work by Zink ~©)

Zink supposed two types of trial Vshell- One of them is a
ion-sphere type potential. Let Ry be a ion~-sphere radius. The

potential Vgyp.97 at r, which is not less than rq determined
later, is the ion-sphere potential.

r2

4 — =

r 2R

| =
0| o

Z‘
Vehet = ¢ ) (3-46)

For r<rq, V is taken to be
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z z
= (o= +A)

Vv, = —
shell = r(1+ar,) R 2R, (3-47)

where Ayis obtained from the continuity condition of the
potential at rq.
The charge neutrality condition reguires that electrons of total

charge Z be located inside R and makes a relation between ri and
Z*’ i-e.’

2ZAI'1 R
A = ————— -

= +
Yoa+ar)? n

W

(3-48)

A is a paraaater which is decided by a given Z.

Therefore, the potential Vshell is parametrized only by a single

*

parameter z*. z* and plasma density is connected by the relation

ZZAI'I VA

z' = +
(1+Ar ) @+Ar) (3-49)

The procedure of numerical calculation is as follows.
First, value is set to an appropriate z* and we calculate the
chemical potential u and Y1, Aq from the Eg. (3-48). The obtained
d is used to refine 2¥. Calculations are repeated till initial
and obtained 2* do not differ. Zink gave the pressure of the
system as a function of temperature. One of his results is shown
in Fig. {2 .The pressure obtained by Zink shows a certain jump at
about ioa density 15g/cm3. He did not present the values of
En,l and we lack the informations about the detailed atomic
structure obtained by this model. C.M.Lee26) added the
contribution from the resonant state which is emerged in

conntinuum states. He wrote the electron distribution as
R (1) =n,  (r) +n,(r)+n (r). (3-%0)

where ny (£) is the elecron density of the resonant electron and
derive iro. the resonant state distribution around a resonant

' L, Ye
energy edsVe of 1tn partial wavew (e-2™ ¢) as

l l,re
ewn (e—e'  )de
n_(r) = ; % Tteplblomu))] (3-51)
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Fig. 12 Pressure against density calculated by Debye-Huckel models. (ref. 27)
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The obtaind pressure (shown in Figl2 again) dose not jump and is

smooth for the entire ion density.

- 51—



IV  Quantum Treatments

We treat electrons not as a classical particles but gquantum
ones in this section. The motion of the electrons is now
expressed by the wave function. To obtain the wave function, we
must set up an appropriate Hamiltonian. As is mentioned
Introduction, there are many ways to do so. We can start with a
single electron Hamiltonian or multielectron one, and we can use
relativistic or non-relativistic, Hartree-Fock approximation or
the Hartree-Fock-Slater approsimatior Moreover, since the
problem is quantum, there exist various methods of finding a
solution such as the variational method, the perturbation method
and the Green function method. The number of combination of the
Hamiltonians, the approximations and the methods is almost
infinite. Therefore, there is no single view point frcm which we
can review the studies carried out by many researchers
correlating each other. So we classify those works for that for a
single atom and for atoms. A single atom problem is divided
into multielecton and single electron problems.
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IV-1 Atoms with External Field (Stark Broadening of Levels)

The earliest work which treats the Stark effect in plasma
was that of Inglis and Teller17), They calculated level
broadening and discussed the depression of series limit in
emission spectra. This effect is one of the explanations of the
experimental continuum lowering.

To discuss the Stark shift, the parabolic coordinate is
suitable because the problem is not "spherical symmetries.
Following Inglis and Teller, let F be the external electric
field. If N single charged ions are in a unit volume, the
strength of the external field F is roughly written as

F = qeN® (4-1)

Holtzmark calculates a value to be 3.7. (This value is known to
be the Holtzmark 1limit). With the given F, energy shift of ng,

n4, ny (nq, np =0,1,2,,,n-1) state is
AE = (3/2)ny(n,~n ageF , (4-2)

where ajy indicates the Bohr radius.
This shows that the maximum splitting of the energy of the njy
orbital is

3n0(n0—1)a0eF. (4-3)

Since the energy of state ng is 1/2n2, the field F requireds to
make the adjacent spectral lines of principal guantum number n

and n-1 to be merged is

2 -
d €
dn 2q.n (4-4)

Y 2 6
F = ell3ani(ng~1)1 = el8a;"n,

Using Eqg. 4-4, we can obtain a rough estimation of the density at

which the line of state n merges into the continuum.
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3.7eN?3 = "“f"g N = (11.1a,%n %
3a. " n
0 0

0

(4-5)

[ 4

Yamamoto and Narumi23) have recently calculated the energy
shift of a hydrogenic neon caused by to the extermnal electric
field from neighbouring ions.

The& wrote the potential in multipole expansion,

L

A r
V(r,R) = - -Z, - > ~+1 P (cos(0)) (4-6)
(=0 r

where Zp and R represent the charge and the position of a
perturber, respectively.

Using this expression, they write the eigen value of the
bound Stark state as,

2 2 2
1 [6_(nl—n2) -—n“+1ln e2zi .
- —_—
Z2n4 a:w

(4-7)
where e=n2aG/R
The second term corresponds to the linear Stark profile and the
third to the quadrupole correction. From Eq. 4-7, shift of Lyman-
series AW,d can be calculated as

d(py = Erle (4-8)
Aw, (p) = 2 ¥ 37 S
where 41kd is defined by
A: = —nln, —n,)+n'(n’, —n’) (4-9)
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and F means the strength of the electric field (ezp/R2). Applying
electric microfield distribution for F, they obtained the Stark
profile. Numerical values of the halfline width are tabulated in
their original paper. Figure |3 shows broadening of levels,
which is superposed on the energy shift caused by the screening
effect discussed in subsection II-2. (see Fig. %)
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Fig. 13 Energy levels broadened by Stark shift for a hydrogenic Neon. (ref, 9)
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IV-2 Average Atom Model and Quantum’ Cell Model

In the preceding subsections, we have considered a single
electron orbital of an atom in a given model potential in section
II. Now we go into the multi-electron problem.

Let's consider an atomic state of a particular ith atom in
plasma. In real plasma, the atomic state . i.e., the electronic
configuration, charge state distibution, and the energy of
orbitals and so on can be specified definitely. However, we are
interested in quantities averaged over the atoms in plasma,
e.g., the average degree of ionization, the energy or the
electron occupation number of orbitals. To obtain these values,
we must calculate the electronic state of each atom which is
interacting each other and then take the average of these
physical gquantities. This procedure needs a lot of calculation.
But, if the atoms are in thermal equiribrium, we can solve the
problem much easier by introducing a hypothetical average atom

which has the following characteristics.

1) The electron occupation number P(n,l) of the n,l1 bound
orbit is not necessarily be integer, thought a real atom in
plasma has integer occupation numbers.

2) P(n,l) satisfies the Fermi-Dirac distribution.

We suppose all the electronic properties of the plasma are
derived from the characteristics of this atom. Though the
justification of this assumption may not be clear, this
hypothetical atom (often called an Average Atom) is frequently
discussed as a representative of the atoms in the plasma for its
simplicity. In order to calculate the energy levels of the
average atom, we can utilize a variety of the methods which are
familiar in guantum mechanics. One of them is the Hartree-Fock
approximation.

Let R, j be the radial wavefunction of a bound state in the
effective potential Vggg. Rp,1 satisfies the Shrogdinger eq.

1 d_ d 201+1)
2 @ g Baa (11 ry Ve 1 B8R, (4-10)
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Then the radial density of bound electron for the average atom

is written as

2(21+1) Rn,l(r) |2
+ep([BE, —w}l

1
nb(r) = 4—; z 1
n,l
(4-11)
where n,l1 summation runs over all the bound states.
For the density of free electron nf(r), the Thomas-Fermi or

the Thomas-Fermi-Dirac approximation is applicable. In the case
of the TF model, n gr) is expressed as

nf(r) = [ }2)2dp
2 1+exp[B(p /2m+Veff—p)] (4-12)

The effective potential Veff is common to all the bound
electrons and written as the sum of the attractive Coulomb
potential by nuclus and the repulsive and exchange potentials

between electrons and correlation if needed, i.e.,

2
e
Vo = = — + V(N4 V_(N+V,_ (1)+[V,(1)]

(4-13)
where Vi(r) stands for the potential caused by surrcunding ions.
The present setting of the problem gives the results of an
isolated atom. The Average Atom correctly represents the
features of the atom in plasma only if effective potential Veff
reflects the plasma properties or an correct boundary condition
on wavefuntion is applied.
There are two types of boundary conditions for the average

atom model.

Type I
The wavefunction of the type I average atom is zero at

infinity. In this case effective potential‘veff reflects the
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contribution from the ions in plasma and satisfies the
condition,
V() =0
(4-14)
Veff(r) = —eZle’

There are various ways to take into account the contribution
from the ions. For example, we can assume Véff to be Debye-Huckel
type, that is, the distribution of ions nl(r) is given by the
Maxwell-Boltzmann distribution,

-BZv
ni(r) =e ' eff

One of the difficulties with the type I average atom model
is concerned with the self-consistency between the obtained
wavefunctions and the initial assumed effective potential. We can
not expect that all of the solutions of eq. 4-10 are real
wavefunctions, because, as is mentioned in the introduction, they
may have a large amplitude at the position of the other ions.
This difficulty becomes more apparent when ion density goes
higher. In order to get rid of this undesirable result, the
Fermi-distribution 4-11 can be modified and n.b(r) is replaced by

a phenomenological parameter D@,

D = 2n2/(1+a(rg/R0)b), (4-15)

where R and the ron are the ion-sphere and radius of the n-th
shell of a neutral atom. By choosing appropriate values for a and
b in eq. 4-15, number of bcund states is limited since the
delocalized orbital changes its nature into that of continuunm
states.

Type II
The second one is the ion-sphere type boundary condition.
The wavefunction of the bound electron should be confined inside

the ion-sphere defined by R This can be done by putting the

0°
boundary condition of radial wavefunction as
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Fig. 14 Lyman « line shift of Neon impurity in a dense plasma at T, = 750 eV. [IPPJ-
AM-31, Institute of Plasma Physics, Nagoya University, Japan (1983)]
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RnJ(O) =0

Rn,l(ro) =0 or

(4-16)
d Rn,l(r)
Z:[-—r——]=0 at r=Ii’.0
R is normalized as
n,l
R
4 0 4 2
n ] rRu’l (r)dr=1 (4-17)

Since the contribution from other ions is represented by the ion-
sphere boundary condition, V&(r) needs not be added to V . The

e
average atom model with this type of boundary condition is often
called the Quantum Cell Model.

S. Skupsky discussed the X-ray line shift of hydrogenic Neon
based on type I boundary condition. One of his typical results is
shown in fig 14 . The shift of 2p - 1s transition energy
oscillates at low electron density region. On the contrary to the
results of ion-sphere model discussed in subsection ITII- 2, blue
shift can be expected at particularly density regions.

BR. Rozsnyai 18) worked with the boundary condition of type
II. In his work Iron atom was investigated taking into account
the relativistic effect. There are many figures and tables in his

original paper.
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IV-3 Cluster Calculation Approaches

The binding nature between ions in plasmas can be taken
account 1if cluster or molecular calculation is applied to
investigate the electronic properties of plasmas. Since most

cluster calculation need larger computational effort than single

atom calculation, there are only a few examples. One of them is the

Discrete Variationa Xy (DV-Xy) mehtod.

Tﬁough ions move randomly in plasmas, the DV-Xa method
deals with fictitious cluster in which atomic configuration is
fixed. The physical background of the model is based on the
discussion that the configuration of ions becomes a spatial
closest pack at a high-density limit. So,this model is applicable
for high G plasmas. The ion density can be controled by changing
the interatomic distances in the cluster. By applying the Fermi-
Dirac distribution for electron occupation, the effect of
electron temperature can be simulated. In the DV-Xg method,
single electron states are calculated on the basis of effective
potentials which involves the exchange interaction between
electrons in an approximate form of the local potential. The
local potential is expressed as being proportional to the cubic
root of the local density n(r) at each point. The total
Hamiltonian of the cluster is given by ‘

H= — %v?—'_[]c-‘- Uex
i=1
where N is the number of electrons in the cluster and UC is a
Coulomb potential term and U®X represents an exchange interaction
term in atomic units. The wavefunction T~ of the cluster is
written by the superposition of the atomic orbital (LCAO-MO) and
expressed as

Y= Z C; X,
J

where XJ is symmetrized orbitals. With the Hamiltonian and

overlap matrices Hi:J and sirJj, given by

H .=<X.IHIX. > 8. .=<X1X.>
i, t J tJ i J

the secular equation for C is
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Fig. 15 Orbital energies for face-centered-cubic cluster Ne,; against the nearest-neighbor

atoms. (ref. 28)
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HC =¢SC

where represents the energies of orbitals. The charge neutrality
condition decides the boundary condition of the wavefunction.
"The electron occupies each orbital with Fermi-Dirac

distribution; that is

1
- % 1 xap(Ble, — )

- p

The calculation is repeated till the self-consistency is achieved
between the resultant wavefuﬁqtions and trial charge
distribution.

One of their results at zero temperature is given in the
Fig.|5., which shows that one electron'energies are given as a
function of interneuclear distance for the face-centered cubic
Ne13 clusters. For the simple cubic Ne8 cluster, the energy
diagram is not different appreciably from that of Ne1l3.

The 2s and 2p orbitals form band-like structure and broaden
their energy levels, which can represent the so-called continuum
lowering. The core 1s orbital gains energy with decreasing
internueclear distance in the region of 10~2 a.u., because the
screening charge of the nuclear attractive potential increases.
At an extremely high density region (higher than 3x1023atoms/cm3
), kinetic energy of electrons rapidly increases because they
are confined in a small limited volume. The increase in kinetic
energy of outer shell electrons is also seen in the region

¥ atoms/cm3 ; this corresponds to the pressure

around 10l
ionization. Within the fictitious cluster, the effective
potential for one-electron orbital, which is same for all
orbitals in the DV-Xxmodel, change its nature from the Coulombic
to highly screened potential as is seen in fig. |6 .

When electron temperature goes up with fixed ion density,
the mixing of the atomic wavefunctions between neighboring atoms
becomes less important. This is one of the natural demonstrations
that atomic representation of the electronic property holds valid
in high temperature plasma. Since thermally ionized electron
forms almost uniform charge distribution, the screening charge of
attractive core potential becomes small. Then, the core orbitals
comes to be bounded more tightly and sequentially the overlap of
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Fig. 16 Effective potentials at different electron densities.
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the wavefunction becomes small. This feature is illustrated in
Fig. |7. «

Recently this method has been applied to the analysis of the
X-ray emission spectra (shown in Fig. 1) of Si which is in grass
micro balloon target in the inertial confinement fusion
experiment. The density and electron temperature for the
spectrum shown in fig. 1. are estimated to be 10g/cm3 and 200
eV, respectively.

_Since ‘he Lyman series of si*13 can be clearly seen in the
spectrum, the electronic configuration of the emitter atom dose
not differ much from those of isolated Si-ion. So a photo emitter
Si ion in a model cluser is is surrounded by eiglit Si atoms with
the average electronic configuration in the plasma. LCAO-MO
wavefunctions are used for the bound state. The free electron
distribution was computed using the Thomas-Fermi method. The
Fermi-Dirac distribution is used to get the occupation number of
the orbital for surrounding eight atoms. By inverse-transforming
the LCAO-MO to Atomic Orbhital, the central Si atom can keep
hydrogenic configuration within the MO-picture. Numerical basis
functions 1s to 5f of Si atom are used for the calculation.

The obtained X-ray transition energies from np to 1s are
plotted in the fig.1 again. In these calculation electron
temperature is supposed to be 200 eV and ion densities are 4, 8,
12, 20, and 40 g/cm3.‘Transition energies are not indicated 1If
the initial orbital np mixed with the orbitals of neighboring
ions and loses atomic property.

The calculated spectra differ from that of isolated si+13,
Firstly, transition energy 2p - 1s shifted red-side about 15 eV
when ion density goes to 40g/cm3. Secondly, 3p level splits into
2 or 3 lines at the density 8 - 12 g/cm3. The transition from 3p
to 1s at 8g/cm3 is not observed experimentally. From these facts
we think emission lines 2p - 1s and 3p -1s from Si atom in high
density and temperature plasma is not observed as sharp lines but
as broad peaks. Since the 4p and 5p orbitals are mixed with those
of neighboring Si atoms , the transition from those orbitals
are burried into the continuum.

'

The merit of the cluster calculaticn is summarized in th
followinyg points. If a single ion is taken as a representative of

ions in plasma, it is difficult to £ind an appropriate boundary
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Fig. 17 Density states of condensed Neon clusters at various temperature. Energy posi-
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conditions for wavefunction as seen in sub-section IV-2. With the
cluster calculation, the boundary condition of the wavefunction
becomes less important when the size of cluster becomes large.
For example the wavefunction located at the central atom of the
cluster can be represented much easier without thinking about its
boundary condition provided a realistic atomic configuration
around the ion is given. And also the contribution of surface
energy to the total energy of the cluster, which depends on the
choice of Hamiltonian and boundary condition of cluster, becomes
small for a huge cluster. However, this extention of cluser size

requires a bigger computational effort.
IV-3-b Cluster model calculation using extended Huckel method

Collins and Merts calculated electronic properties of
clusters which contain about 100 atoms using the extended Huckel
method. Their calculation is based on the Born-Oppenheimer
approximation, namely fixed atomic configuration as DV-Xy method
mentioned in the above subsection. The band width of Na, Al Ccu
and Fe are calculated as a function of interatomic separation or
in other word, compression in the range of ion density from 1023
to 1026, The electron temperature is supposed to be zero and the
thermal motion of ions is not directly taken into account in
their calculation. However, one of their important results is
that the distortion of atomic configyuration by the thermal motion
of ions will change the band width by at most 10 ¢ at the
temperature below 500 K and the mixing of atomic orbital has a
large contribution to the broadening of levels at the plasma
parameters they are iﬂvestigated.
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V  Conclusion

At the beginning of this article, we started our discussion
with the reasonablly genzal description of the problem. We wrote
a time dependent Hamiltonian o the system consist of nucleus and
electrons and showed how it can be reduced into atomic models in
plasmas. Though a lot of fruitful results have been achieved
using these method and they can explain the experimental results
fairly well, authors of this article think the present study on
atomic problem in plasma is not adeguate.

For example the broadening of level is expalined in
different way atomic an molecular models, In the atomic picture,
the level broadening is acumulation of energy shifts of he
orbitals, i.e., tim averaging of energy shift. If we evaluate the
electronic propertis of plasmas in time, we can get a perturbed
potential at a given time. This perturbation potential will cause
the shift of energy and the distribution of energy levels as a
function of time is related to the broadening of the levels if we
take the atomic picture. The effective potential models fo a ion
in plasmas calculate the shift of energy but they are not
directly connected to this time averaging procedure or at least
their relation is not clear. On the contraly, the molecular
calculation shows the broadening of levels even if ions do not
move, namel T=09. The width of levels by melecular calculation
should be enhanced by the thermal motion of ions. These two
models are valid at different plasma marameters, however, they
should be combined. The key to this goal seems to be the time
evaluation of plasmas.

An urgent requirment for theoretical study of atomic
processes in plasmas is getting information usuful for designing
a nuclear fusion reactor, that is how we get much more high
compression and high temperature in inertial confinement fusion.
Speaking more concretely we have to answer the question such as
how do electron and ion become hot at shock front and how does
radiation transport the energy in the course of compression.

Agyain we feel a need for a time dependent calculation of
atomic properties in plasmas. However, at present, non of models
in this article can not predict the behaviour of electrons and
ions because the motion of ions is thoughly omitted from the
discussions. Only a few model seems to be able to describe the
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properties of atoms in real plasmas with some future extension of
theories. These extensions are realy desired not only for the

progress of ICF program but also for the basis study of UV and
X-ray lasers and so on.

—70—



Acknowledgement

Authors would like to express their thanks to Prof. K.Mima
of Institute of Laser Enginnering, Osaka Univ., Prof. K. Yonei
and H. Toutsuji in Okayama Univ., for their helpful discussion.
K.F. expresses special thanks to Prof. T. Fujimoto of Kyoto
Univ. for careful reading of the manuscript and Prof. T.Watanabe
for continuous encouragement.

This work is partly supported by as a joint program of
Research Information Center in the Institute of Plasma Physics,

Nagoya Univ,

- 71—



References

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

S. Karashima et al.;

“Stopping Power Theories of Charged Particles in Inertial Confinement Fusion Plasma”,
IPPJ-AM-423, Institute of Plasma Physics, Nagoya University, Japan (1985)

R.M. More; :

“Pressure Ionization Resonances and the Continuity of Bound aﬁd Free State”, Advance in
Atomic and Molecular Physics, Vol. 21, Academic Press, Inc. (1985)

G. M. Harris;

“Attractive Two-Body Interactions in Partially Ionized Plasmas”, Phys. Rev. 125, 5, 1131,
(1961)

C. R. Smith;

“Bound State in a Debye-Huckel Potential”, Phys. Rev. 134, 5A, A1235, (1964)

F. J. Roggers, H. C. Graboske, Ji , and J. Harwood;

“Bound Eigenstates of the Static Coulomb Potential”, Phys. Rev. A, 1, 6, 1577, (1970)

K. M. Roussel and R. F. O’Connell; :

“Variation Solution of Shrodinger’s Equation for the Static Screen Coulomb Potential”,
Phys. Rev. A, 9, 1,52, (1973)

T. Hashino, S. Nakazaki, T. Kato and H. Kashiwabara;

“Energy Eigenvalues of Helium-like Atoms in Dense Plasmas”, Phys. Lett. A, 123, 236,
(1987)

S. Skupsky,

“X-ray Line Shift as a High-Density Diagnostic for Laser-Imploded Plasmas™, Phys. Rev. A,
21,4, 1316, (1980)

K. Yamamoto and H. Narumi;

“High-Density Diagnostics for Laser-Imploded Plasmas”, J. Phys. Soc. Jpn. 52, 2, 520,
(1983)

J. C. Stewart and K. D. Pyatt, Jr.;

“Lowering of Ionization Potential in Plasma”, Astrophys. J. 144, 1203, (1966)

R. D. Cowan and J. Ashkin;

“Extension of the Thomas-Fermi Statistical Theory of the Atom”, Phys. Rev. 105, 1, 144,
(1957)

C. F. von Weizsacker;

«7ur Theorie der Kerumassen”, Z. Phys. 96,431, (1935)

J. S. Plaskett;

“The theory of the Thomas-Fermi Electron Density”’, Proc. Phys. Soc. A, 66, 178, (1953)

W. Kohn and L. J. Sham;

“Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140, 4A,
all33, (1965)

—~72 -



15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

P. Honenberg and W. Xohn;

“Inhomogeneous Electron Gas”, Phys. Rev. 136, 3B, B864, (1964)

N. D. Marmin;

“Thermal Properties of the Inhomogeneous Electron Gas”, Phys. Rev. 137, A1441 (1965)

F. Perrot; ‘

“Gradient Correlation to the Statistical Electronic Free Energy at Nonzero Temperature:
Application to Equation of State Calculations”, Phys. Rev. A, 20, 2586, (1979)

N. H. March; .

“On the Thomas-Fermi Approximation in Quantum Mechanics”

U. Gupta and A. X. Rajagopal;

“Density Functional Formalism at Finate Temperatures with Some Approximations”,
Physics Report, 87, No. 6, 259, (1982)

R. D. Cowan and J. G. Kirkwood;

“Quantum Statistical Theory of Plasmas and Liquid Metal”, J. Chem. Phys. 29, 264, (1958)
W. Zakowicz, I. J. Feng and R. H. Pratt;

“Problem in the Use of Statistical Average Atom Potentials for Estimating Average Degree of
Ionization”, J. Quant. Spectrosc. Radiat. Trans. 27, 329, (1982)

T. R. Carson and H. M. Holligsworth;

“A Critique of the Hydrogenic Approximation in the calculation of stellar opacity”, Mon.
Not. R. astro. Soc. 141, 77, (1968)

I. J. Feng, W. Zakowicz and R. H. Pratt;

“Problem in Estimating Average Degree of Ionization for High-Temperature Dense Plasmas”,
Phys. Rev. A, 23, 2, 883, (1980)

B. F. Rozsnyai and B. J. Alder;

“Quantum-Statistical Models for Multicomponent Plasmas™, Phys. Rev. A, 14, 6, 2295,
(1976)

B. F. Rozsnyai;

“Quantum Statistical Models for Multicomponent Plasmas, II”, Phys. Rev. A, 16, 4, 1687,
(1977)

J. W. Zink;

“Shell Structure and the Thomas-Fermi Equation of State”, Phys. Rev. 176, 1, 1279, (1968)
C. M. Lee and E. 1. Thorsons;

“Properties of Matter at High Pressures and Temperature”, Phys. Rev. A, 17, 6, 2073, (1978)
K. Fujima, T. Watanabe and H. Adachi;

“Analysis of the Electron Properties of Extremely Condensed Matter by the Discete-varia-
tional X, Method: Application to Cold Dense Neon Plasma™, Phys. Rev. A, 32, E1985)

S. Younger et al.;

Phys. Rev. Letters (1988) in press

— 73—



References related to “Atomic Models for Hot Dense Plasmas”

1)

2)

3)

4)

3)

6)

7)

8)

9)

10)

11)

12)

13)

R. M. More;

“Quantum Statistical Model for High-Density Matter”, Phys, Rev. A, 19, 3, 1234, (1979)

K. Yonei;

“Oﬁe-Electron Energy Leveis from a Relativistic Thomas-Fermi Model”, J. Phys. Soc. Jpn.,
54,1, 93, (1985)

I.J. Fenget al.;

“Calculation of Free-Free Grant Factors in Hot Dense Plasmas’, Phys. Rev. A, 27, 6, 3209,
(1982)

D. Shalitin, J. Stein and Akiva Ron;

“Ievel and Line Broadening for Thomas-Fermi Atoms at Finite Temperacure”, Phys. Rev.
A, 29,5,(1984)

J. Goodlisman;

“Modified Weizsacker Correlation in Thomas-Fermi Theories”, Phys. Rev. A, 1, 6, 1574,
(1970)

D. R. Inglis and E. Teller;

Ionic Depression of Series Limits in One-Electron Spectra®, Astrophys. J. 90, 439, (1939)

B. F. Rozsnyai;

“Relativistic Hartree-Fock-Slater Calculations for Arbitrary Temperature and Matter density™,
Phys. Rev. A, 5, 3, 1137, (1972)

U. Gupta and A. XK. Rajagopal;

“Screening Effects on the Electronic States of an Atom Embedded in Laser-Imploded Plasmas™,
J. Phys. B, 14,2309, (1981)

M. L. Zimmerman et-al.;

“Stark Structure of the Rydberg States of Alkali-Metal Atoms”’, Phys. Rev. A, 20, 6, 2251,
(1979)

U. Gupta and A. K. Rajagopal;

“Density Functional Formalism at Finite Temperatures with Some Applications”, Physics
Report 87, 259, (1981)

H. Nagase and T. Nakamura;

“Theory of Lattice-Dynamical Properties of Compressed Solid”’, Phys. Rev. B, 31, 4, 1844
(1985)

1. J. Feng and R. H. Pratt;

“Binding Energies and Bound-Free Transition Matrix Elements for an Impurity Atom in a
Hydrogen Plasma’, J. Quant. Spectrosc. Radiat. Transfer 27, 3, 341, (1982)

D. Shalitin, A. Ron and Y. Reiss;

“Iron Plasma: Sensitivity of Photoelectric Cross Sections to Different Model and General
Features of the Fermi-Amaldi-Modified Model”, J. Quant. Spectrosc. Radiat. Transfer, 27,
219 (1982)

— 74—



14)

15)

16)

17)

18)

19)

B. F. Rozsnyai;

“Screening Effects upon Spectral Lines in Hot Matter”, J. Quant. Spectrosc. Radiant. Transfer,
15, 695, (1975)

R. M. More;

“Electronic Energy-Level in Dense Plasmas”, J. Quant. Spectrosc. Radiat. Transfer, 27, 345,
(1982)

M. Lamoureux et al.,

“Calculation of Free-Free Gaunt Factors for 1KeV electrons in a 1KeV Normal Density Ce
Plasma”, J. Quant. Spectrosc. Radiat. Transfer, 27, 227 (1982)

D. A. Liberman;

“Self-Consistent Field Model for Condensed Matter”, Phys. Rev. B, 20, 12, 4981, (1979)

F. Perrot;

“Hydrogen Plasma Beyond Density-Functional theory: Dynamical correlation and the Onset
of Localization”, Phys. Rev. A, 29, 3, 1378, (1984)

X. Z. Yan and S. Ichimaru;

“Theory of Interparticle Correlations in Dense, High-Temperature Plasmas. VII. Polarization
Shift of Spectral Line”, Phys. Rev. A, 34, 3, 2173, (1986)

~75—



IPPJ-AM-1*

IPPJ-AM-2%

IPPJ-AM-3

IPPJ-AM-4

IPPJ-AM-5*

IPPJ-AM-6*

IPPJ-AM-T7*

IPPJ-AM-8

IPPJ-AM-9

IPPJ-AM-10

IPPJ-AM-11

IPPJ-AM-12*

IPPJ-AM-13

IPPJ-AM-14

LIST OF IPPJ-AM REPORTS

“Cross Sectionsfor Charge Transfer of Hydrogen Beams in Gases and Vapors
in the Energy Range 10 eV—10 keV”

H. Tawara (1977) [Published in Atomic Data and Nuclear Data Tables 22,
491 (1978)]

“Jonization and Excitation of Ions by Electron Impact —Review of Empirical
Formulae—""

T. Kato (1977)

“Grotrian Diagrams of Highly Ionized Iron FeVII-FeXXVI”

K. Mori, M. Otsuka and T. Kato (1977) [Published in Atomic Data and
Nuclear Data Tables 23, 196 (1979)]

“Atomic Processes in Hot Plasmas and X-Ray Emission”

T. Kato (1978)

“Charge Transfer between a Proton and a Heavy Metal Atom™

S. Hiraide, Y. Kigoshi and M. Matsuzawa (1978)

“Free-Free Transition in a Plasma —Review of Cross Sections and Spectra—""
T. Kato and H. Narumi (1978)

“Bibliography on Electron Collisions with Atomic Positive Ions: 1940
Through 1977

K. Takayanagi and T. Iwai (1978)

“Semi-Empirical Cross Sections and Rate Coefficients for Excitation and
Ionization by Electron Collision and Photoionization of Helium”

T. Fujimoto (1978)

“Charge Changing Cross Sections for Heavy-Particle Coliisions in the Energy
Range from 0.1 eV to 10 MeV I. Incidence of He, Li, Be, B and Their Ions”
Kazuhiko Okuno (1978)

“Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy
Range from 0.1 eV to 10 MeV II. Incidence of C, N, O and Their Ions”
Kazuhiko Okuno (1978)

“Charge Changing Cross Sections for Heavy-Particle Collisions in the Energy
Range from 0.1 eV to 10 MeV Iil. Incidence of F, Ne, Na and Their Ions”
Kazuhiko Okuno (1978)

“Electron Impact Excitation of Positive Ions Calculated in the Coulomb-
Born Approximation —A Data List and Comparative Survey—"’

S Nakazaki and T. Hashino (1979)

“Atomic Processes in Fusion Plasmas — Proceedings of the Nagoya Seminar
on Atomic Processes in Fusion Plasmas Sept. 5-7, 1979

Ed. by Y. Itikawa and T. Kato (1979)

“Energy Dependence of Sputtering Yields of Monatomic Solids”

N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa,
K. Morita and R. Shimizu (1980)

— 76 —



IPPJ-AM-15

IPPJ-AM-16

IPPJ-AM-17

IPPJ-AM-18

IPPJ-AM-19

IPPJ-AM-20

IPPJ-AM-21

IPPJ-AM-22

IPPJ-AM-23

IPPJ-AM-24

IPPJ-AM-25

IPPJ-AM-26

IPPJ-AM-27

IPPJ-AM-28

“Cross Sections for Charge Transfer Collisions Involving Hydrogen # ~“ms”
Y. Kaneko, T. Arikawa, Y. Itikawa, T. Iwai, T. Kato, M. Matsuzawa, % . .vakai,
K. Okubo, H. Ryufuku, H. Tawara and T. Watanabe (1980)

“Two-Centre Coulomb Phaseshifts and Radial Functions™

H. Nakamura and H. Takagi (1980)

“Empirical Formulas for Ionization Cross Section of Atomic Ions for Elec-
tron Collisions —Critical Review with Compilation of Experimental Data—"’
Y. Itikawa and T. Kato (1981)

“Data on the Backscattering Coefficients of Light Ions from Solids”

T. Tabata, R. Ito, Y. Itikawa, N. Itoh and K. Morita (1981) [Published in
Atomic Data and Nuclear Data Tables 28, 493 (1983)]

“Recommended Values of Transport Cross Sections for Elastic Collision and
Total Collision Cross Section for Electrons in Atomic and Molecular Gases”
M. Hayashi (1981)

“Electron Capture and Loss Cross Sections for Collisions between Heavy
Ions and Hydrogen Molecules™

Y. Kaneko, Y. Itikawa, T. Iwai, T. Kato, Y. Nakai, K. Okuno and H. Tawara
(1981)

“Surface Data for Fusion Devices — Proceedings of the U.S—Japan Work-
shop on Surface Data Review Dec. 14-18, 1981

Ed. by N. Itoh and E.W. Thomas (1982)

“Desorption and Related Phenomena Relevant to Fusion Devices”

Ed. by A. Koma (1982)

“Dielectronic Recombination of Hyc.ogenic Ions”

T. Fujimoto, T. Kato and Y. Nakamura (1982)

“Bibliography on Electron Collisions with Atomic Positive Ions: 1978
Through 1982 (Supplement to IPPJ-AM-7)"’

Y. Itikawa (1982) [Published in Atomic Data and Nuclear Data Tables 31,
215 (1984)]

“Bibliography on Ionization and Charge Transfer Processes in Ion-Ion
Collision”

H. Tawara (1983)

“Angular Dependence of Sputtering Yields of Monatomic Solids™

Y. Yamamura, Y. Itikawa and N. Itoh (1983)

“Recommended Data on Excitation of Carbon and Oxygén Ions by Electron
Collisions™

Y. Ttikawa, S. Hara, T. Kato, S. Nakazaki, M.S. Pindzola and D.H. Crandall
(1983) [Published in Atomic Data and Nuclear Data Tables 33, 149 (1985)]
“Electron Capture and Loss Cross Sections for Collisions Between Heavy
Tons and Hydrogen Molecules (Up-dated version of IPPJ- AM-20)

H. Tawara, T. Kato and Y. Nakai (1983) [Published in Atomic Data and
Nuclear Data Tables 32, 235 (1985)]

- 77 -



IPPJ-AM-29

IPPJ-AM-30

IPPJ-AM-31

IPPJ-AM-32

IPPJ-AM-33

IPPJ-AM-34

IPPJ-AM-35

IPPJ-AM-36

IPPJ-AM-37

IPPJ-AM-38

IPPJ-AM-39

IPPJ-AM-40

IPPJ-AM-41

“Bijbliography on Atomic Processes in Hot Dense Plasmas”

T. Kato, J. Hama, T. Kagawa, S. Karashima, N. Miyanaga, H. Tawara,
N. Yamaguchi, K. Yamamoto and K. Yonei (1983)

“Cross Sections for Charge Transfers of Highly Ionized Ions in Hydrogen
Atoms (Up-dated version of IPPJ-AM-15)”

H. Tawara, T. Kato and Y. Nakai (1983) {Published in Atomic Data and
Nuclear Data Tables 32, 235 (1985)]

““Atomic Processes in Hot Dense Plasmas™

T. Kagawa, T. Kato, T. Watanabe and S. Karashima (1983)

“Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic
Solids™

N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa,
K. Morita, R. Shimizu and H. Tawara (1983) [Published in Atomic Data and
Nuclear Data Tables 31, 1 (1984)]

“Proceedings on Symposium on Atomic Collision Data for Diagnostics and
Modelling of Fusion Plasmas, Aug. 29 — 30, 1983

Ed. by H. Tawara (1983)

“Dependence of the Backscattering Coefficients of Light Ions upon Angle of
Incidence”

T. Tabata, R. Ito, Y. Itikawa, N. Itoh, K. Morita and H. Tawara (1984)
“Proceedings of Workshop on Synergistic Effects in Surface Phenomena
Related to Plasma-Wall Interactions, May 21 — 23, 1984”

Ed. by N. Itoh, K. Kamada and H. Tawara {1984) [Published in Radiation
Effects 89, 1 (1985)]

“Equilibrium Charge State Distributions of Ions (Z,2 4) aiier Passage
through Foils — Compilation of Data after 1972

K. Shimz, T. Mikumo and H. Tawara (1985) [Published in Atomic Data and
Nuclear Data Tables 34, 357 (1986)]

“Ionization Cross Sections of Atoms and Ions by Electron Impact™

H. Tawara, T. Kato and M. Ohnishi (1985) [Published in Atomic Data and
Nuclear Data Tables 36, 167 (1987)]

“Rate Coefficients for the Electron-Impact Excitations of C-like Ions”

Y. Itikawa (1985)

“Proceedings of the Japan-U.S. Workshop on Impurity and Particle Control,
Theory and Modeling, Mar. 12 — 16, 1984”

Ed. by T. Kawamura (1985)

“Low-Energy Sputterings with the Monte Carlo Program ACAT”

Y. Yamamura and Y. Mizuno (1985)

“Data on the Backscattering Coefficients of Light Ions from Solids (a
Revision)”

R. Ito, T. Tabata, N. Itoh, K. Morita, T. Kato and H. Tawara (1985)

—78 —



IPPJ-AM-42

IPPJ-AM-43

IPPJ-AM-44

IPPJ-AM-45

IPPJ-AM-46

IPPJ-AM-47

IPPJ-AM-48

IPPJ-AM-49

IPPJ-AM-50

IPPJ-AM-51

IPPJ-AM-52

IPPJ-AM-53

IPPJ-AM-54

“Stopping Power Theories for Charged Particles in Inertial Confinement
Fusion Plasmas (Emphasis on Hot and Dense Matters)”
S. Karashima, T. Watanabe, T. Kato and H. Tawara (1985)

“The Collected Papers of Nice Project/IPP, Nagoya”

Ed. by H. Tawara (1985)

“Tokamak Plasma Modelling and Atomic Processes”

Ed. by T. Kawamura (1986)

Bibliography of Electron Transfer in Ion-Atom Collisions

H. Tawara, N. Shimakura, N. Toshima and T. Watanabe (1986)

“Atomic Data Involving Hydrogens Relevant to Edge Plasmas”

H. Tawara, Y. Itikawa, Y. Itoh, T. Kato, H. Nishimura, S. Ohtani, H. Takagi,
K. Takayanagi and M. Yoshino (1986)

“Resonance Effects in Electron-Ion Collisions”

Ed. by H. Tawara and G. H. Dunn (1986)

“Dynamic Processes of Highly Charged Ions (Proceedings)”

Ed. by Y. Kanai and S. Ohtani (1986)

“Wavelengths of K X-Rays of Iron Ions”

T. Kato, S. Morita and H. Tawara (1987)

“Proceedings of the Japan-U.S. Workshop P-92 on Plasma Material Inter-
action/High Heat Flux Data Needs for the Next Step Ignition and Steady
State Devices, Jan. 26 — 30, 1987

Ed. by A. Miyahara and K. L. Wilson (" 987)

“High Heat Flux Experiments on C-C Composite Materials by Hydrogen
Beam at the 10MW Neutral Beam Injection Test Stand of the IPP Nagoya”
H. Bolt, A. Miyahara, T. Kuroda, O. Kaneko, Y. Kubota, Y. Oka and
K. Sakurai (1987)

“Energy Dependence of Ion-Induced Sputtering Yields of Monatomic Solids
in the Low Energy Region”

N. Matsunami, Y. Yamamura, N. Itoh, H. Tawara and T. Kawamura (1987)
“Data Base on the High Heat Flux Behaviour of Metals and Carbon Materials
for Plasma Facing Components — Experiments at the 10 MW Neutral Beam

Injection Test Stand of the IPP Nagoya”
H. Bolt, C. D. Croessmann, A. Miyahara, T. Kuroda and Y. Oka (1987)
“Final (n, £) State-Resolved Electron Capture by Multiply Charged Ions

from Neutral Atoms”
N. Shimakura, N. Toshima, T. Watanabe and H. Tawara (1987)

—79 —



IPPJ-AM-55  “Atomic Data for Hydrogens in Collisions with Electrons — Addenda to

IPPJ-AM-46”
H. Tawara, Y. Iﬁkawa, H. Nishimura and M. Yoshino (1987)
IPPJ-AM-56  “Total and Partial Cross Sections for Electron Capture for ca* (q= 6—2)and
09* (q=8-2) lons in Collisions with H, H, and He Atoms”
H. Tawara (1987)
IPPJ-AM-57  ““Atomic Models for Hot Dense Plasmas™
K. Fujima (1988)

Available upon request to Research Information Center, Institute of Plasma Physics, Nagoya
University, Nagoya 464, Japan, except for the reports noted with*.

— 80 —



i

Sl

L oM e
g gt e

S
i
]

3




