

高熱流大気圧プラズマが関与するプラズマ応用 研究について

金沢大学 上杉喜彦

- 1. 高熱流プラズマが関わる産業プラズマ
 - ・大電流遮断器、配線用遮断器の例
- 2. 産業用高熱流プラズマを用いたプラズマ-壁相互作用研究
 - ・大電流密素アークプラズマを用いた重相プラズマ研究
 - ・高周波誘導プラズマを用いた炭素ダスト研究

0.1~10気圧付近の大気圧プラズマ

熱平衡プラズマ ← → 非(熱)平衡プラズマ 冷たいプラズマ 熱いプラズマ

アークプラズマ応用例

HIDランプ

<u> 電流遮断器</u>

電力用大電流遮断(ガス遮断器)の課題1

(高分子材料を適用) TMT&D (株)

電力用大電流遮断の課題2

大電流遮断器の動作:電流ゼロ点遮断

(過渡回復電圧)

電流遮断の動作・実験例

配線用遮断器

配線用遮断器短絡事故時の動作例

アークプラズマーポリマー相互作用の例

POM:ポリアセタール (デルリン)

電流遮断の動作・実験例

配線用遮断器

配線用遮断器短絡事故時の動作例

アークプラズマーポリマー相互作用の例

POM:ポリアセタール (デルリン)

電流遮断の動作・実験例

配線用遮断器

配線用遮断器短絡事故時の動作例

アークプラズマーポリマー相互作用の例

POM:ポリアセタール (デルリン)

ポリマー構成粒子に起因する発光分析

(C,Arを含む)

伊藤九大教授・田中阪大教授が主導する 「非平衡極限プラズマ全国共同連携.研究ネットワーク計画」の 一課題として、

- ・大電流(大電流密度)アークプラズマが形成する
 重相極限構造プラズマの解明
- ・アーク遮断器、アークプラズマ切断機などの高性能化
- ・核融合炉におけるELM/Disruption 時のダイバータ壁の 動的応答性の解明からその制御へ

🏟 重相(混相)極限構造プラズマ:未踏の物性領域

宇宙/アブレーター

パルス高熱流負荷による核融合炉壁損耗

大電流密度アークプラズマが形成する重相構造

mmスケールの 重相極限構造 プラズマ相 液滴、金属蒸気 プラズマ混合相 液相(金属溶融池)

(電極)

固相

プラズマ切断機用アークプラズマトーチを利用した 高融点金属材料損耗試験

プラズマ切断機

電極-被切断物の間に酸素アークプラズマを発生 酸素プラズマの熱と 鉄の酸化燃焼反応を利用して切断溝を形成 軟鋼の中厚板を高効率切断 造船や建築・橋梁 など溶接構造物の切断工程で 多用

鋼板切断の様子

陰極 (直径:1.6 mm) **実験室でのアーク実験**

ハフニウム電極(中心) 銅電極(水冷ジャケット)

新品

使用済み

プラズマ切断機用アークプラズマトーチを利用した 高融点金属材料損耗試験

プラズマ切断機

電極-被切断物の間に酸素アークプラズマを発生 酸素プラズマの熱と 鉄の酸化燃焼反応を利用して切断溝を形成 軟鋼の中厚板を高効率切断 造船や建築・橋梁など溶接構造物の切断工程で 多用

鋼板切断の様子

実験室でのアーク実験

陰極(直径:1.6 mm) ハフニウム電極(中心) 銅電極(水冷ジャケット)

新品

プラズマ切断機用アークプラズマトーチを利用した 高融点金属材料損耗試験

プラズマ切断機

電極-被切断物の間に酸素アークプラズマを発生 酸素プラズマの熱と 鉄の酸化燃焼反応を利用して切断溝を形成 軟鋼の中厚板を高効率切断 造船や建築・橋梁など溶接構造物の切断工程で 多用

鋼板切断の様子

実験室でのアーク実験

陰極(直径:1.6 mm) ハフニウム電極(中心) 銅電極(水冷ジャケット)

新品

電極ノズル冷却用配管

HINSHITSU BA-A

レアメタルの存在量と価格

遮断器電極:電力用遮断器(WCu:60%W, 40%Cu)
 配線用遮断器(WCAg:~60%WC, ~40%Ag)
 プラズマ切断機陰極:ハフニウム(銅ホルダー)
 プラズマ溶射機陰極:タングステン

電極材料	融点(°C)	沸点(°C)	酸化物	融点(℃)	沸点(℃)
タングステン	3410	5550	WO ₃	1473	1840
モリブデン	2620	4650	MoOз	795	1155
ハフニウム	2230	4600	HfO ₂	2812	5400
ジルコニウム	1852	4377	ZrO ₂	2679	4548

アークスポットの直接観察と表面温度計測

カラー高速カメラを用いた電極表面温度の評価

150A直流アーク放電の熱流束値

アーク電流・電圧 アーク立ち上がり時熱流束 250 500 2 5000 200 400 4000 1.5 Emissive Area(mm²) Arc voltage (V) Arc current (A) Heat Flux(MW/m 300 150 3000 1 100 200 2000 0.5 50 100 1000 -0.5 2.5 0.2 -0.05 0.15 2 0.05 0.1 0.5 1.5 Ο 0 Time (sec) Time (sec) 陰極点面積・熱流束 アーク立ち下がり時熱流束 2 1000 2 5000 800 4000 Emissive Area(mm²) 1.5 1.5 Emissive Area(mm²) Heat Flux(MW/m² Heat Flux(MW/m⁴ 600 3000 1 1 2000 400 0.5 0.5 1000 200 -0.5 0 1.9 2.5 2.05 1.95 0.5 1.5 2 2 O Time (sec) Time (sec)

定常熱負荷:~400 MW/m², 過渡的熱負荷:数GW/m², 数ms

陰極アークスポットカラー画像と表面温度変化

アークスポットカラー画像

表面温度変化

0.8

Time[s]

2.0

1.8

0

0.6

陰極アークスポットカラー画像と表面温度変化

マーク電極表面温度の動的変化

アーク発生直後
 電極表面温度:最大
 (沸点近くまで上昇)
 定常時
 電極表面温度:
 4300K~3500K
 溶融面積:電極表面
 89%
 アーク消弧時

電極表面温度: 電流低下と共に低下 溶融面積:

アーク消滅後に急速 に低下

溶融陰極からの熱電子放出電流の評価

リチャードソン・ダッシュマンの式

$$I_s = AT^2 \exp(-\frac{\phi}{kT})$$

A係数 H_f:1.4x10⁵ A/m²K H_fO₂:0.49 A/m²K²

仕事関数 H_f:3.5 eV H_fO₂:2.8 eV

・アーク電流とほぼ比例
 した熱電子電流波形
 ・金属Hf面とした時、
 熱電子放出が全電流の
 電流~95%を担う

放電後の電極(陰極)

陰極溶融液面からの液滴飛散

4000 fps

250 μsec毎のコマ撮り写真

放電後の電極 (陰極)

陰極溶融液面からの液滴飛散

4000 fps

250 μsec毎のコマ撮り写真

150 A放電: 23000 fps/43.5 µsで撮影

沸騰バブルの成長

アーク放電停止時の陰極液滴噴出現象

プラズマ圧力低<mark>下と旋回ガス流による溶融池からの噴出</mark>

アーク陰極面動画像とRGB発光強度比

アークスポット液相面からの飛散液滴と温度評価

250µsec毎の陰極点液面変化

大電流密度安定化アーク放電を用いたPWI研究

1. GA/m²級の大電流密度アークプラズマ

- ・アーク放電立ち上げ時の熱流束:~数GW/m²
- ・定常アーク放電時の熱流束:~数百MW/m²

2. 大電流アークプラズマを利用した重相極限構造プラズマ研究

- ・溶融陰極面の直接観測:表面温度動的変化の観測
- ・陰極金属溶融池からの過渡的液滴放出現象の観測

今後、プラズマガンや高強度レーザを用いた研究グループと 協力して「重相極限構造プラズマ」の物性解明に取り組む予定

最後に: Plasma Conference2011の案内

平成23年度

プラズマ・核融合学会第28回年会 日本物理学会秋季大会領域2 応用物理学会

プラズマエレクトロニクス分科会

三学会共同主催で Plasma Conference2011 として開催 担当:プラズマ・核融合学会

日時:平成23年11月22日(火)~25日(金) 場所:金沢市(石川県立音楽堂、他)

水素原子を内蔵した炭素粒子凝集・微粒子成長=>トリチウムの貯蔵源

窒素ガス導入による炭素ダスト成長制御2: 微粒子成長抑制

A the second s

□ ダスト形成

- N₂/H₂: ~2%の添加で数密度が大きく減少(1/10)
- N₂/H₂: < 1%の範囲ではダストの成長が促進

窒素ガス導入による炭素ダスト成長制御2:分子スペクトル

窒素ガス導入による炭素ダスト成長制御3:粒子組成計算

