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Introduction: problems with force fields for materials and PMI

Hydrogen retention in irradiated tungsten

IAEA Coordinated Research Project (CRP) on Plasma-wall
interaction with irradiated tungsten and tungsten alloys in fusion
devices (2013-2018). See https://www-amdis.iaea.org/CRP/.

Need to understand effect of radiation om microstructure and
effect of microstructure on hydrogen retention and migration.

Must use surrogate irradiation; need modelling to interpret
experimental data.

Most basic computations: primary radiation damage and hydrogen
migration.

Relatively short timescale. (Long timescale: segregation,
corrosion.) Molecular dynamics is the main tool.
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Introduction: problems with force fields for materials and PMI

Problems with potentials for tungsten

Talk by A. Sand (Helsinki, with Kai Nordlund) at IAEA,
2017-11-16: “Energetic cascades in tungsten: sensitivity to
interatomic potentials and electronic effects.”

“Potentials with largely similar point defect formation and
migration energies disagree regarding clustered fraction of defects
for high PKA energies. Some potentials predict only very small
clusters, others show formation of clusters of > 100 point defects.”

“Why the different predictions, despite extensively fitted ’good’
potentials??”

Discuss blending to short-range Ziegler-Biersack-Littmark (ZBL)
potential.

Many-body effects beyond embedded atom (EAM) approach.
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Introduction: problems with force fields for materials and PMI

Vacancy Clustered Fraction
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Self-Interstitial Atom Clustered Fraction
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Average Number Frenkel Pairs per Cascade
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Introduction: problems with force fields for materials and PMI

Force fields for fusion materials and plasma-material
interaction

The potential is (almost) everything; and that needs to be
reflected in the effort.

Keep in mind the following target application: Primary radiation
damage in W-H-He. PKA event, melt region, resolidification. More
difficult than pure W (see above); not as difficult as steel.

Quantum effects on the nuclear motion: barely ever relevant.

Electronic excitation beyond simple stopping: can be important,
could be taken into account. (Langevin approach, potential
depends on electron temperature.)
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Atomistic Modelling

Molecular dynamics: “F=ma”

N atoms; classical nuclei, positions x(i), 1 ≤ i ≤ N.

Interaction potential V (X ) (X ∈ R3N).

Force F = −∇V .

d2x(i)

dt2
= − 1

mi

∂V

∂x(i)

Electron dynamics is gone. This is the Born-Oppenheimer
(adiabatic) approximation.

For large molecules and condensed phase a local representation
may be used: V =

∑
i V0(Xi ) where Xi are the collective nuclear

coordinates for a local environment of the i-th atom.
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Atomistic Modelling

Other uses of potential energy surfaces

Born-Oppenheimer approximation allows quantum nuclei; it is not
limited to semiclassical molecular dynamics.

Molecular spectroscopy: Eigenvalue problem HΨ = EΨ for the
nuclear wavefunction. Tractable for small molecules.

Diffusion Monte Carlo for the ground state nuclear wavefunction:
Random walk with birth and death processes.

Quantum statistics: < A >β= 1
Z(β)tr(Ae

−βH). Averages
calculated using Path Integral Monte Carlo.

Ring Polymer Molecular Dynamics and variants; PIMC plus time
evolution. Model for nuclear quantum effects.

Quantum scattering: i~ ∂
∂t Ψ(X , t) = HΨ(X , t). Application to

reaction dynamics is pretty much limited to 4-atom systems.
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New approaches from big data and machine learning

New Approaches from Big Data and Machine Learning

Machine Learning has brought specific methods, e.g. deep
convolutional neural networks (Vision, Go).

Machine Learning is also bringing a change of attitude...

Nothing wrong with optimizing over very many variables
(Stochastic Gradient Descent).

Nothing wrong with lots of local minima, even inequivalent ones.
Don’t ask for a guaranteed global optimum.

(NN with 20 layers and 256 nodes per layer and a ReLU
nonlinearity has multiplicity of about 1010139, being (256!)20; with
tanh nonlinearity about 1011680, being (2256 × 256!)20.)
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New approaches from big data and machine learning

Fitting or learning in the presence of symmetries

Example: Want to fit or learn f : RN → R, f (x) = z , using data
f (Xα) = zα. Typical point x = (x1, ..., xN). Say that the
underlying true function is totally symmetric in the (xi )i . Options:

(a) Ignore the symmetry, use any plausible model. (Maybe
replicate the data using symmetry.) Obtain symmetry via accuracy.

(b) Use explicit invariants of a good functional form. Example:
yk = pk(x) (where the pk are elementary symmetric polynomials
for 1 ≤ k ≤ N), then f (x) = g(y(x)) with some plausible model
for g . Efficient; technically difficult for more complicated
symmetries. (Braams+Bowman at Emory University.)

(c) Use explicit invariants of an easily generalizable form. Example:
y = Sort(x), then f (x) = g(y(x)). Introduces nonsmoothness,
often discontinuities. Obtain smoothness via accuracy.
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New approaches from big data and machine learning

GAP-SOAP approach of G. Csányi, B. Bartók et al.

Key reference: Bartók, Kondor, Csányi (2013) Phys Rev B 87.

Gaussian Approximation Potential (GAP), also referred to as
Kernel Ridge Regression, high-dimensional version of Radial Basis
Functions. Authors use both language of Machine Learning and
language of function fitting, regression analysis.
f (X ) =

∑
α wαK (X ,Xα).

Smooth Overlap of Atomic Potentials (SOAP) kernel K (X ,X ′).

X 7→ ρ, S(ρ, ρ′) =
∫
ρ(r)ρ′(r)dr .

K (X ,X ′) =
∫
|S(ρ,R.ρ′)|n dR, R ∈ O(3).

Integrals evaluated via spherical harmonic expansion.
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New approaches from big data and machine learning

SchNet, Deep Tensor network from TU Berlin

Key reference: Schütt, Sauceda, Kindermans, Tkatchenko, Müller
(2018) J Chem Phys 148. Also Nature (2017).

Say N atoms. Each NN layer contains atomic feature vectors xi for
each atom (1 ≤ i ≤ N); positions are global parameters.

Transitions between layers, l → l + 1 (before the nonlinearity):

Dense atom-wise, x l+1
i = W l .x li + bl ;

Convolution feature-wise: x l+1
i = (X l ?W ′l)i . Convolutions

depend on relative distances.

Smooth shifted SoftPlus instead of ReLU.

Weights to be fitted as functions of relative positions.
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New approaches from big data and machine learning

Spherical Wavelet Expansion approach led by S. Mallat

Key reference: Eickenberg, Exarchakis, Him, Mallat, Thiry (2018)
J Chem Phys 148.

General with respect to chemical elements.

Global transform, no explicit reference to local environments.

Smoothed densities ρ(r) =
∑

i nig(r − ri ), smooth kernel g ;
separate densities for core and valence electrons. (Optional bond
densities; ignore those.)

Solid harmonic wavelet basis functions ψm
j ,l ; convolutions with

densities ρ.

Now symmetrize with respect to rotations and translations ...

Finally multilinear regression.
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New approaches from big data and machine learning

Atomic cluster expansion by R. Drautz, Bochum

Key reference: Drautz (2019) PRB 99.

Local environment of atom i , descriptors Aiv =
∑

j φv (~rji ), where
the φv are a family of basis functions: v = (nlm) and then

φv (~r) =
√

4πRnl(‖~r‖)Ym
l (~r/‖~r‖).

Cluster products involving Clebsch-Gordon coefficients

B
(K)

i ,~n,~l
=

∑
~m

CG(~l , ~m)× Ai ,n1,l1,m1 · · ·Ai ,nK ,lK ,mK
.

Finally Ei =
∑

K ,~n,~l
c

(K)

~n,~l
B

(K)

i ,~n,~l
.

Drautz (2019) also describes a nonlinear version to overcome slow
convergence of the cluster expansion.
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New approaches from big data and machine learning

DeepMD approach led by E and Car, Princeton Univ.

Key reference: Zhang, Han, Wang, Car, E (2018) PRL 120.

Recall V =
∑

i V0(Xi ) where Xi are the collective nuclear
Coordinates for a local environment of the i-th atom.

Local environment is shifted to i-th atom, rotated in a
problem-dependent manner. Let j enumerate neighbouring atoms
within a cut-off distance.

Environment descriptor D(Xi ) = Sort{Dij} sorted by chemical
species and by distance Rij .

Dij = (1/Rij , xij/R
2
ij , yij/R

2
ij , zij/R

2
ij )

Obtain V0 as output of a deep neural network with inputs the
ordered (Dij)j .
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New approaches from big data and machine learning

DeepPot-SE, deep potential smooth edition, from
Princeton University and IAPCM

Key reference: Zhang, Han, Wang, Saidi, Car, E, NIPS 2018.

Follow-on to the DeepMD work, but now with due respect for
continuity, energy conservation and vector covariance.

Environment descriptors without rotation or sort:
Dij = sij(rij)× (1, xij , yij , zij); sij → 0 for large rij .

Two-stage NN: an encoding network and a fitting network.

Encoding network maps local environment to a feature space
preserving point group and permutation symmetry.

Fitting network is fully connected feed-forward neural network with
skip connections.
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Related developments in machine learning

Perspective from Machine Learning .. Intro

Basic feed-forward neural network: v (l) = φ(W l
l−1.v

(l−1)).

v ∈ Rb; φ e.g. pointwise ReLU; W ∈ Mat(b, b) to be learned.

Structured network: v ∈ X b, X ∼ RN with some structure. W has
a corresponding structure.

Example (Convolutional Neural Network, CNN): X ∼ Rm×n,
pixelized greyscale image. Elements of W are convolutions with
compact kernel.

Parameterized network: Data depend on parameters p, weights to
be learned as a function of p. (Linear regression formulation.)
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Related developments in machine learning

Invariants and Covariants

Vector spaces U and V , group G with representations on U and
V . For g ∈ G we write g .u or g .v for the action of g on a typical
element u ∈ U or v ∈ V .

Function f : U → V is covariant (equivariant) if for all g ∈ G and
u ∈ U, f (g .u) = g .f (u).

(Invariants are the special case g .v ≡ v .)

Example, the dipole moment d(X ), X ∈ R3N . Invariant under
Sym(N), covariant under O(3).

Represent it by effective charge model: d(X ) =
∑

i wi (X )ri ; then
the weight vector w ∈ RN is covariant under Sym(N) and
invariant under O(3).
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Related developments in machine learning

Point Cloud Convolutional Networks

Permutation equivariant neural networks (“Deep Sets”): Zaheer,
Kottur, Ravanbhakhsh et al., NIPS 2017.

Structured and parameterized: X ∼ RN , v ∈ RN×b; interpret as
feature vector of size b for each of N points in R3. Parameters p:
positions ri (1 ≤ i ≤ N). Weights W represent local convolutions;
depend on local distances.

Point cloud convolutional networks are covariant (equivariant)
under Sym(N).

See also: [SpiderCNN convolutional filters on point sets: Xu, Fan,
Xu, Zeng, Qiao, Proc ECCV 2018], [PointConv deep convolutions
on point sets: Wu, Qi, Fuxin, Arxiv 2018], other work on
permutation equivariant NN.
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Related developments in machine learning

Point Clouds with Additional Structure

Basic point cloud network has v ∈ RN×b; feature vector of size b
for each of N points. Group is Sym(N); feature vectors are
unstructured. Imagine additional structure in the feature vector.

Additional group G of transformations on v , especially
permutation group or SO(3); parameters and feature vector have
definite transformation properties under G .

Group-Equivariant CNN: Cohen and Welling, ICML 2016.

Spherical Convolutional Neural Networks: Cohen, Geiger, Köhler,
Welling, ICLR 2018.

Tensor Field Networks: Thomas, Schmidt, Kearnes et al., Arxiv,
2018.

Gauge Equivariant CNN: Cohen, Weiler, Kicanaoglu, Welling,
Arxiv, 2019.
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Related developments in machine learning

Conclusions

There are promising new approaches to force fields with inspiration
from big data and machine learning. (No assessment here of
relative merits.)

There are valuable related developments from machine learning
community inspired at least in part by application to atomistic
force fields.

BJB wish list for developments ...

Simultaneous learning of energy, dipole, quadrupole moment
through local charges with long-range interactions.

Fit or learn bands in solids invariant under SL(3,Z).

Learn local effective Hamiltonians for excited states.
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Supplement: Other uses of potential energy surfaces

Other uses of potential energy surfaces

Supplementary slides.
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Supplement: Other uses of potential energy surfaces

Molecular spectroscopy

Eigenvalue problem HΨ = EΨ:

−
∑
i

~2

2mi
∆iΨ(X ) + V (X )Ψ(X ) = EΨ(X )

Configuration interaction approach (Hartree products):

Ψ(X ) =
∑
α

cαΨα(X )

Ψα(X ) = Πiψ
(i)
α(i)(x(i))

This provides the ro-vibrational spectrum. Tractable for small
molecules: e.g. 2(H2O), CH3OH; up to 9 atoms in our work.
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Supplement: Other uses of potential energy surfaces

Diffusion Monte Carlo

Ground state wavefunction: HΨ = E0Ψ.

−
∑
i

~2

2mi
∆iΨ(X ) + V (X )Ψ(X ) = E0Ψ(X )

Steady state for reaction-diffusion equation:

∂Ψ

∂t
−

∑
i

~2

2mi
∆iΨ(X ) + V (X )Ψ(X ) = E0Ψ(X )

Can be solved in many dimensions using random walk with birth
and death processes.

Result is ground state energy E0; plus sample from the ground
state wavefunction. (Sample |Ψ2| via descendant weighting.)
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Supplement: Other uses of potential energy surfaces

Quantum statistics

Partition function Z (β) = tr(e−βH). Thermal averages:

< A >β=
1

Z (β)
tr(Ae−βH)

Use e−βH = (e−(β/n)H)n; H = T + V ; n→∞. Let βn = β/n,
ωn = 1/βn~;

Vn(X) =
∑
i

(V (Xi ) +
1

2
mω2

n(Xi+1 − Xi )
2)

Zn(βn) =

∫
e−βnVn(X)dx

Path Integral Monte Carlo.
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Supplement: Other uses of potential energy surfaces

Ring Polymer Molecular Dynamics

Due to David Manolopoulos (Oxford). PIMC plus time evolution.
Classical hamiltonian:

Hn(x , p) = Vn(x) +
∑
i

p2
i

2m

dx

dt
=
∂Hn

∂p
,

dp

dt
= −∂Hn

∂x

Seen as a model for calculating the quantum Kubo correlation
function.

c̃A,B(t) =
1

βZ (β)

∫ β

0
tr(e−(β−λ)HA(0)e−λHB(t))dλ
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Supplement: Other uses of potential energy surfaces

Quantum scattering

Time-dependent Schrödinger equation:

i~
∂

∂t
Ψ(X , t) = HΨ(X , t)

Wavepacket propagation in an unbounded domain. Application to
reaction dynamics is pretty much limited to 4-atom systems.
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