

First Principles Modeling on Radiation Defects in W and Wbased Alloys

T. Suzudo¹, T. Tsuru^{1,2}

¹Japan Atomic Energy Agency

²Kyoto University

Irradiation to fusion materials is severe

Molecular dynamics by LAMMPS (BCC Fe)

Operational condition of materials in various nuclear devices (IAEA GC51)

Neutron irradiation to W causes Re (and Os) through nuclear transmutation

$$\begin{split} & \overset{\text{Nuclear reaction of W under neutron irradiation}}{}^{186} W(n,\gamma)^{187} W \\ & \rightarrow (\beta-) \ ^{187} \text{Re} \begin{cases} (n,\gamma)^{188m} \text{Re} \rightarrow (\gamma) \ ^{188} \text{Re} \rightarrow (\beta) \ ^{188} \text{Os} \\ (n,2n)^{186} \text{Re} \rightarrow (\beta-) \ ^{186} \text{Os} \end{cases} \\ \end{split}$$

Cottrrel et al., Fusion Sci. Technol. 50(2006) 89.

Re causes radiation-induced precipitation in W

W-Re phase diagram [1]

Solubility limit of Re > 20%

Neutron-irradiated W-5Re 1.54dpa, 750°C [2]

Plate-like or needle-like precipitates (χ -phase, Re₃W)

[1] Williams et al., Metallurgical Trans. A , 14A 655-666(1983)[2] Tanno et al., Mater. Trans. 49[10], 2259-2264(2008)

Re in W reduce radiationinduced void swelling

Neutron irradiation 9.5 dpa, @EBR-II [1]

Neutron irradiation 1.54dpa, 750°C@JOYO [2]

	W	W-5Re	W-10Re
Void			
Mean diameter [nm]	4.7	3.3	1.6
Density $[10^{22}/m^3]$	12	0.65	3.1
Swelling $[\%]$	0.72	0.01	0.01
Precipitate			
$Mean \ length \ [nm]$	_	14	9.5
Density $[10^{22}/m^3]$	_	7.3	42
Volume [%]	_	1.5	3.6

[1] J. Matolich et al, Scr. Metall. 8 (1974) 837-841.[2] T. Tanno et al., Mater. Trans. 49 (2008) 2259-2264.

Goal of this study is :

To explain the experimentally-discovered Re-effects using the first-principles calculations

Modeling methodology

•VASP (Vienna ab initio) Simulation Package) Projected augmented wave potential (PAW/PBE) • $5a_0 \times 5a_0 \times 5a_0$ (250 lattice sites) super cell •K-point $(3 \times 3 \times 3)$ Cutoff energy: 350eV •Nudged elastic band method to calculate migration barrier

Displaced W forms W-Re dumbbell, (AEA) which migrate and rotate

W-Re dumbbell can rotate easily

T. Suzudo, M. Yamaguchi, A. Hasegawa, Modeling Simulation Mater. Sci. Eng. 22 (2014) 075006.

T. Suzudo, A. Hasegawa, Scientific Reports vol. 6, 36738 (2016).

Binding energy

	Vacancy (eV)	SIA (eV)
Re	0.22	0.79

Vacancy and SIA bind Re

Re atoms are dragged by vacancy and SIA and aggregated through recombination.

Our recombination scenario explains both radiation-induced precipitation and suppression of swelling.

Binding energy for other solute atoms are calculated

Ti, V, and Cr form mixed-dumbbells, but not solute-vacancy complex

W-Ti, W-V, W-Cr dumbbells also (AEA) Have 3D motion

<11h> dumbbell is the most favorable The rotation is easy. Migration energy of mixed dumbbell

T. Suzudo, T. Tsuru, A. Hasegawa, J. Nucl. Mater. 505 (2018) 15-21

- DFT study predicts 3D migration of W-Re mixed dumbbell, this seems a cause of swelling suppression and radiation-induced precipitation.
- Ti, V, Cr may suppress radiation effect without causing precipitate, but experimental verification is required.