

4th International Workshop on Models and Data for Plasma-Material Interaction in Fusion Devices

Date: 18-20 June 2019 Venue: National Institute for Fusion Science (NIFS) 322-6 Oroshi-cho, Toki, Gifu 509-5292, JAPAN

VIBRATIONAL PROPERTIES OF URANIUM AND PLUTONIUM

JOHANN BOUCHET, FRANÇOIS BOTTIN, BORIS DORADO, ALOIS CASTELLANO

CEA, DAM, DIF, F-91297 ARPAJON, FRANCE

www.cea.fr

DFT (GGA, +U, +DMFT...) has been a successful tool to understand the ground state properties of the actinides and their compounds : Structures, Equilibrium volume, Bulk modulus, elastic constants, phase transitions in pressure...

R. C. Albers, Nature 410, 759-761 (2001)

T ≠ 0 K ???

[Los Alamos Science, number 26, 2000]

- Comparison with experiments at room temperature.
- Low melting points.
- Dynamical instability of the bcc structure.
- Elastic constants of uranium at low T.
- CDW in uranium

. . .

- Thermal conductivity of nuclear fuels
- Thermal dilation (uranium, plutonium)
- Softening of the bulk modulus of Pu
- Phase transitions (low symmetry vs high symmetry)

DE LA RECHERCHE À L'INDUSTR

PHONON SPECTRUM

 $U, S_{vib}, C_V...$

Density functional perturbation theory (DFPT) T= 0 K Harmonic approximation : no thermal expansion, no phase transitions (melting)

Quasi harmonic approximation : phonon frequencies are volume dependent

Structures dynamically stable at 0 K Weak anharmonicity Bcc unstable at 0 K Low melting point, phase transitions

HARMONIC-ANHARMONIC : AI VS Pu

30

Atomic Percent Molybdenum

10

U

40

50

Mo

URANIUM Introduction. DFT, a ground state theory (T=0 K) α , ortho γ, bcc **T**≠0 K : DFPT and Quasi Harmonic approximation 40 Failure of the QHA for uranium at low T. - kba Pressure Introduction of a new method : TDEP 20 Ortho bcc (γ) (a Phase transitions in uranium Liquid Tetragono (β) δ, fcc The case of plutonium. 500 1000 1500 U-Mo alloys Temperature - K Weight Percent Molybdenum PLUTONIUM 8 10 20 ε, bcc 800 Monoclir (ß) 700· $\gamma + \epsilon$ Contraction Contra Monoclínic (a) $\alpha + \gamma$ +γ' Pressura – kba bcc (€) 500- $\alpha + \gamma'$ Υ Τ. γ0 $\gamma' + \epsilon$ Ms γ⁰_d 200-Orthorhomb (γ) Tetragon 100-M. a 200 1000 1200 400 600 800 20

Temperature - K

URANIUM METAL

Uranium is the only element discovered so far to exhibit CDW phase transitions at ambient pressure.

Evolution of the soft mode in temperature shows a phase transition and a doubling of the unit cell in the [100] direction.

[Smith et al., Phys. Rev. Lett. 1980]

Uranium-Phonon spectrum with DFPT (T=0 K)

Pressure (GPa)

h (r.l.u.)

DE LA RECHERCHE À L'INDUSTRI

FAILURE OF THE QHA (T≠ 0 K)

A. Dewaele, J. Bouchet, F. Occelli, M. Hanfland, and G. Garbarino, Phys. Rev. B **88**, 134202 (2013)

QHA only takes into account the thermal dilatation

 $\omega(T) = \omega(V)$

- □ Inadequate for uranium because of the soft modes
- \Box α -U is NOT the correct structure at 0 K

The phonon frequencies have to be explicitly dependent of the temperature

HOW TO TAKE INTO ACCOUNT THE TEMPERATURE? AB INITIO MOLECULAR DYNAMICS

Forces are related to displacements by the interatomic force constants (IFC)

 $\boldsymbol{\Phi_{ij}}$ and then $\boldsymbol{\omega}$ will be temperature dependent

Temperature-dependent effective potential (TDEP)

O. Hellman et al. PRB 84 180301 (2011)

TDEP METHOD

At each time step of the AIMD, we have the forces and the displacements :

O. Hellman et al. PRB 84 180301 (2011)

NEW METHODS TO TREAT ANHARMONICITY BEYOND THE QHA

- Self-Consistent Ab-Initio Lattice Dynamics (SCAILD) [P. Souvatzis et al. 2008, P. Souvatzis et al. 2009, W. Luo et al. 2010],
- Stochastic Self-Consistent Harmonic Approximation (SSCHA) [I. Errea et al. 2014, I. Errea et al. 2014, L. Paulatto et al. 2015, M. Borinaga et al. 2016],
- Temperature Dependent Effective Potential (TDEP) [O. Hellman et al. 2011, O. Hellman 2013, P. Steneteg et al. 2013, J. Bouchet et al. 2015],
- Anharmonic LAttice MODEI (ALAMODE) [Tadano et al. 2014, Tadano et al. 2015],
- □ Compressive Sensing Lattice Dynamics [L. J. Nelson et al. 2013, F. Zhou et al. 2014].
- DynaPhopy [A. Carreras, A. Togo, and I. Tanaka, 2017, T. Sun, D. Zhang D., R. Wentzcovitch 2014]
- Other methods obtain anharmonic contributions via a derivation of the Gibbs energy [A. Glensk et al. 2015],

WORKSHOP CECAM : "Anharmonicity and thermal properties of solids" January, 10-12th 2018, PARIS

 \mathbb{C}

TEST CASE: AI

FORCES : TDEP VS AIMD

- Supercell : 4x2x3 of α–U = 96 atoms of uranium (up to 11th shell of nearest neighbors)
- 32 kpoints
- Experimental parameters (Llyod, Barrett J. Nucl. Mater. 1966)
- 50, 300 and 900 K starting with the ideal positions
- Around 3 000 time steps

Around 1-2 millions CPU hours

All the calculations have been performed using the ABINIT package, PAW (14 valence electrons), GGA.

URANIUM : AVERAGE POSITIONS AT 300 AND 50 K

No change in the [011] plane, the atoms stay in the ideal positions

At 50 K, the atoms adopt new equilibrium positions with a small displacement in the x direction

URANIUM : TDEP (T≠ 0K) VS DFPT(T=0K)

Comparison TDEP-Exp at 300 K

Temperature (K)

Comparison TDEP-DFPT

- **D** At *V*(900 K), the α -U structure is unstable with DFPT
- At V(300 K), TDEP gives results comparable to exp while DFPT still predict a destabilization of α-U
- □ At *V*(50 K), TDEP predicts the phase transition towards the CDW state

J. Bouchet & F. Bottin., Phys. Rev. B 92, 174108 (2015)

URANIUM : PHASE DIAGRAM

[J. Bouchet & F. Bottin., Phys. Rev. B 95, 054113 (2017)]

URANIUM : PHASE DIAGRAM

 $F(T,V) = E(0,V) + F_{vib}(V,T) + F_{el}(V,T)$

CS Yoo et al, Phys. Rev. B 57 10359 (1998)

PHONONS IN δ-PU

Exp: J. Wong et al., Science 301, 1078 (2003)

NEGATIVE THERMAL EXPANSION

 \Box Experimentally, δ -Pu has a NTE. Until now, no theory has ever been able to capture it.

Grüneisen and thermal expansion coefficients in δ -Pu:

$$\gamma = \frac{\alpha B}{\rho c_{\nu}} \qquad \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$$

Influence of volume change on phonon frequencies

Volume variation as a function of T

	300 K	600 K	900 K	Exp.	D. C. Wallace Phys. Rev. B 58 , 15433 (1998)
γ	-1.48	-1.23	0.49	-0.25	
lpha	-56	-58	24	-26	

 \Box **\delta-Pu NTE also correctly reproduced** (though larger than experiments).

\Box Analysis shows the **soft mode in** Γ **-L is responsible** for the NTE.

```
DE LA RECHERCHE À L'INDUSTRIE
```

Plutonium: bcc ε phase stabilization

 \Box bcc is unstable at 0 K even with DMFT or LDA+U

□AIMD with LDA shows a disordered structure

□AIMD with LDA+U gives a gradual stabilization of the bcc structure around 900 K

□Calculated transition temperature = 1000K (exp=750K)

See also P. Söderlind, Scientific Reports 7, 1116 (2017)

B. Dorado, J. Bouchet & F. Bottin., Phys. Rev. B 95, 104303 (2017)

Uranium-Molybdenum Alloys

Motivations

Uranium metals are promising nuclear fuels Pure uranium has three allotropes : α -U orthorombic, β -U tetragonal, γ -U body centered cubic

The γ-U phase is a good option for nuclear fuel, but it's unstable at low temperature (T<1000K)

Stabilize the γ phase by alloying $\,$ uranium with a bcc metal such as Mo $\,$

Goals

Construct the phase diagram of the bcc U-Mo system

Study the γ -stabilization effect of molybdenum

Steiner et al, J Nucl. Mater. 500 (2018) 184

- Ab-initio Molecular Dynamics (AIMD) in the NVT ensemble
 GGA functional with the PAW formalism as implemented in Abinit
- □ 4x4x4 supercells with 128 atoms
- □ Random alloys are modeled by Special Quasirandom Structures (SQS)

Zunger et al. Phys. Rev. Lett. 65, 353 (1990)

γ-stabilization effect in UMo

Stabilization of the bcc phase in UMo

MIXING FREE ENERGY

 $G_{mix}(T, x) = G_{U_{1-x}Mo_x}(T) - x G_{Mo}(T) - (1-x) G_U(T)$

- □ The standard methods (DFPT, QHA) have limited applications for the actinides.
- □ AIMD and TDEP give phonon frequencies with an explicit temperature dependence.
- □ The CDW phase transition is well predicted as the transition line between α and γ -U
- □ The high temperature phases of Pu are found stable with TDEP
- □ Stabilization of bcc U by Mo
- $\hfill\square$ Phase transitions mechanisms between α and δ plutonium
- Phase diagram of Pu
- □ Higher orders terms (phonon lifetime, thermal conductivity...)

Arigatou gozaimasu Thank you for your attention