First-principles modeling of defects and hydrogen in oxides

Chris G. Van de Walle

Materials Department, University of California, Santa Barbara, USA

with Minseok Choi (Inha U., South Korea), Justin Weber (Intel), Anderson Janotti (U. Delaware), John Lyons (NRL)

Supported by ONR and SRC

International Workshop on Models and Data for Plasma-Material Interaction in Fusion Devices (MoD -PMI 2019)
National Institute for Fusion Science, Tajimi, Japan
June 18-20, 2019
First-principles calculations
Density functional theory, many-body perturbation theory

Oxides
- Transparent conductors
- Dielectrics
- Thermal barriers
- Complex oxides

Hydrogen as a fuel
- Kinetics
- Complex hydrides
- Metal hydrides
- Proton conductors

Quantum computing with defects
- Qubits
- Single photon emitters

Nitrides
- Doping
- Surfaces
- Interfaces
- Efficiency, loss
Computational Approach

• Traditional density functional theory approach
 – Local or semi-local density approximation
• Hard to interpret due to band-gap problem
• Major problem when addressing defects or surface/interface states
• Our approach: Hybrid functional calculations
 – The HSE hybrid functional
• A fraction of screened Hartree-Fock exchange
• Accurate band gaps and defect levels
• 120-atom supercell, 400 eV cutoff energy,
 2x2x1 k-point mesh

Defect Formation Energy

Determine defect concentrations: \([D] = N_0 \exp(-E_f/kT)\)

\[
E_f[V_O] = E_{\text{tot}}[V_O] - E_{\text{tot}}[\text{bulk}] + \mu_O
\]
Defect Formation Energy

Determine defect concentrations: \([D] = N_0 \exp(-E^f/kT)\)

\[
E^f[V^+_O] = E^{tot}[V^+_O] - E^{tot}[\text{bulk}] + \mu_O + \varepsilon_F
\]

\(\text{Al}_2\text{O}_3: V_O\) \hspace{1cm} \(\text{Al}_2\text{O}_3\) \hspace{1cm} \(\frac{1}{2} \text{O}_2\) \hspace{1cm} \(e^- @ \varepsilon_F\)

O chemical potential
Defect Formation Energy

Determine defect concentrations: $[D] = N_0 \exp(-E^f/kT)$

$$E^f[V_O^-] = E^{tot}[V_O^-] - E^{tot}[\text{bulk}] + \mu_O - \varepsilon_F$$

"First-principles calculations for point defects in solids",
Defect Formation Energies

example: V_O

- Plotted for extreme Al-rich and O-rich limits
 - Very wide range given by $\Delta H_f (\text{Al}_2\text{O}_3) = -17.36 \text{ eV}$
 - Actual chemical potential is somewhere in between
- Slope indicates charge
- Kinks: charge transition levels
- Information used to study fixed charge and defect levels
Native point defects in α-Al$_2$O$_3$

![Graph showing formation energy as a function of Fermi level for O-Rich and Al-Rich conditions.](image)
Defect level positions in α-Al$_2$O$_3$

Energy (eV)

Conduction band

- V_{Al}
- V_{O}
- Al_i
- O_i

Valence band

- V_{Al}
- V_{O}
- Al_i
- O_i

Energy levels:
- $(0/-)$
- $(+/-)$
- $(+/0)$
- $(+/+)$
- $(0/2-)$
- $(2/-3-)$
- $(0/-)$
- $(0/2-)$
Local geometry and charge densities

V_O

V_{Al}

Al_i

O_i

V_{O}^0

Al_{i}^0

O_{i}^0

h^+

e^-
Defect levels in κ- and α-Al$_2$O$_3$

Hydrogen in Al$_2$O$_3$

Formation Energy (eV)

$\mu_0 = -0.65$ eV

O_2 gas @ 270 °C and 1 Torr
Hydrogen in Al_2O_3

- Hydrogen can easily incorporate into Al_2O_3
- Hydrogen occupies the interstitial site (H_i)
 - (+/-) impurity level near mid-gap
- Low migration energy
- H_i can interact with native defects or impurities in Al_2O_3

α-Al_2O_3

\[\mu_0 = -0.65 \text{ eV} \]

O_2 gas @ 270 °C and 1 Torr
H complexes with Al vacancy in Al$_2$O$_3$

- Al vacancy:
 - 3 charge state over most of Al$_2$O$_3$ band gap
 - negative fixed-charge center

- H captured by Al vacancy:
 - $V_{Al}+nH$ ($n=1,3$) complexes lower the electrical charge of V_{Al}
 - $V_{Al}+3H$ complex is electrically inactive
Local geometry and charge density

Ga_{Al}^0

N_0^0

C_{Al}^0

H_1^0
Gallium in Al₂O₃

Formation Energy (eV)

Ga-rich

Gaₐ

Ga₀

Gaₐ₂Al

O-rich

μ₀ = -0.65 eV

O₂ gas @ 270 °C and 1 Torr
Nitrogen in Al$_2$O$_3$

![Graphs showing formation energy vs. Fermi level for Al-rich and O-rich conditions.]

- N_{Al}
- N_i
- N_O

Formation Energy (eV) vs. Fermi level (eV)

- $\mu_O = -0.65$ eV
- O_2 gas @ 270 °C and 1 Torr
Carbon in Al$_2$O$_3$

Formation Energy (eV)

Al-rich

O-rich

$\mu_0 = -0.65$ eV

O_2 gas @ 270°C and 1 Torr
Impurity Levels in Al$_2$O$_3$
Diffusion of point defects

- Relevant for ...
 - growth
 » Defects ‘frozen in’ or not
 - Ion implantation
 » Anneal damage
 - Degradation
 - Irradiation

- Zinc interstitial:
 - $E_m=0.57$ eV
Annealing temperature of point defects

\[\Gamma = \Gamma_0 \exp \left(-\frac{E_b}{kT} \right) \]

\[\Gamma_0 \approx 10^{13} \text{s}^{-1} \]

\[\Gamma \approx 1 \text{s}^{-1} \]

<table>
<thead>
<tr>
<th></th>
<th>(E_b) (eV)</th>
<th>T annealing (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Zn}_i^{2+})</td>
<td>0.57</td>
<td>219</td>
</tr>
<tr>
<td>(V_{\text{Zn}}^{2-})</td>
<td>1.40</td>
<td>539</td>
</tr>
<tr>
<td>(V_{\text{O}}^{2+})</td>
<td>1.70</td>
<td>655</td>
</tr>
<tr>
<td>(V_{\text{O}}^{0})</td>
<td>2.36</td>
<td>909</td>
</tr>
<tr>
<td>(O_i^{0})(split)</td>
<td>0.87</td>
<td>335</td>
</tr>
<tr>
<td>(O_i^{2-})(oct)</td>
<td>1.14</td>
<td>439</td>
</tr>
</tbody>
</table>

Summary

• First-principles calculations provide qualitative insights and quantitative details for point defects
• Native defects and impurities in Al_2O_3

References