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Point defects

How should we deal with defect-defect interactions?

Theoretical modelling is challenging
• Supercell approach
• Defect-defect interactions
• Advanced electronic structure methods

(beyond standard DFT, i.e. hybrid 
functionals, GW, QMC)

• Point defects (dopants, impurities, vacancies, 
interstitials, …) critical for semiconductor & 
insulator properties

• Low concentrations (1016-1020 cm-3

≈10-6 – 10-2 relative)
• Important insights from theory & calculations
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Outlook
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Corrections for 
charged-cell artifacts Charged-defect 

interactions at scale

bulk

Elastic interactions
within thermodynamics
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Supercell calculations

• Wave function overlap (decay e-αr) → k-integration
• Strain (decay 1/r3) → often small
• Coulomb interactions (decay 1/r) → ?

L
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Slow supercell convergence

supercell calculations 
without corrections

DFT-LDA, norm-conserving PP, no ionic relaxation (=no strain)
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Three-step process
1. add N electrons to defect state bare charge 
2. relax other electrons change in potential 
3. Introduce periodicity periodic potential 

+background

Exact formulation of artifacts
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CF, J. Neugebauer, C.G. Van de Walle, PRL 102, 016402 (2009).
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Long-range treatment
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• plateau indicates a successful modelling of long-range effects

Short-range effects

sr DFT lr( ) ( ) ( )V V V C= ∆ − −r r r 



Charged defects with DFTChristoph Freysoldt – MPI Düsseldorf 9

-3 Ga vacancy in GaAs (unrelaxed)

• Supercell-independent formation energies within 0.1 eV

bulk: CF, J. Neugebauer, C.G. van de Walle, PRL 102, 016402 (2009).

sxdefectalign available at https://sxrepo.mpie.de

Surfaces, interfaces, 2D materials:
CF, J. Neugebauer, Phys. Rev. B 97, 205425 (2018).
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Real interactions
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• Real defects occur at finite concentrations (10-6..10-3 relative)
• Random distribution (at high T, low concentration)
• Formation energy will vary from site to site due to interactions

200x200x200 cells (8 million)
periodic boundary conditions

Simulation setup

• Fully compensated 𝑐𝑐+ = 𝑐𝑐−
• Randomly distributed charges
• Screening by mobile carriers

𝑉𝑉 𝑟𝑟 =
1
4𝜋𝜋𝜋𝜋

𝑄𝑄
𝑟𝑟
𝑒𝑒−𝑟𝑟/𝜆𝜆

• Many realizations (104 -105 sites)
• Collect statistics
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Interactions in random order
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Coulomb interaction with randomly distributed defects 
yields Gaussian-like broadening of formation energy

𝑝𝑝 Δ𝐸𝐸 ∼ 𝑒𝑒
−Δ𝐸𝐸

2

2𝛽𝛽2

−
Δ𝐸𝐸2

2𝛽𝛽2
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How does broadening change with c?
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𝛽𝛽2 ∼ 𝑐𝑐

𝛽𝛽

0.03 𝑒𝑒𝑒𝑒

0.01 𝑒𝑒𝑒𝑒

0.1 𝑒𝑒𝑒𝑒

1017𝑐𝑐𝑚𝑚−3 1019𝑐𝑐𝑚𝑚−31018𝑐𝑐𝑚𝑚−3

𝑎𝑎0 = 0.5 𝑛𝑛𝑛𝑛, 𝜖𝜖 = 10𝜖𝜖0
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How does broadening change with 𝜆𝜆?
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𝛽𝛽2 ∼ 𝜆𝜆

𝑝𝑝 Δ𝐸𝐸 ∼ 𝑒𝑒
−Δ𝐸𝐸

2

2𝛽𝛽2 𝛽𝛽 ∼
𝑄𝑄2

4𝜋𝜋𝜋𝜋𝑎𝑎0
𝑐𝑐𝑐𝑐

𝑎𝑎0 = 0.5 𝑛𝑛𝑛𝑛, 𝜖𝜖 = 10𝜖𝜖0, 𝑄𝑄 = ±1𝑒𝑒, 𝜆𝜆 = 10𝑛𝑛𝑛𝑛, 𝑐𝑐 = 1018𝑐𝑐𝑚𝑚−3

≈ 0.03𝑒𝑒𝑒𝑒
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Outlook

Christoph Freysoldt – MPI Düsseldorf 14

Corrections for 
charged-cell artifacts Charged-defect 
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bulk

Elastic interactions
within thermodynamics
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Elastic interactions between defects

One approach: Lattice Green’s function [Tewary, Phys. Rev. B 094109 (2004)].
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Thermodynamic view

bulk

defect Ub+d= Ub + Ud
Vb+d = Vb + Vd

Hb+d(p)= Hb(p) + Hd(p)

Enthalpy: H(p) = U(V) + pV

p = −
𝜕𝜕𝜕
𝜕𝜕𝜕

ΔE = Ub+d(Vb+d) - Ub(Vb+d)

Vb+d(p) = Vb(p) + Vd(p)
Ub+d(Vb+d(p))= Ub(Vb(p)) + Ud(Vd(p))
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ΔE at constant volume

64 atom
8 atom

216 atom

substitutional 
Ge in Si

ΔE at constant volume converges to formation enthalpy ΔHf
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Get ΔUf, ΔHf, ΔVrel from DFT 

Ub+d(Vb+d) = Ub(Vb+d) + ΔE

p        = pb + Δp
−
𝜕𝜕
𝜕𝜕𝜕

ΔVrel (p) = Vb+d(p) - Vb(p)

ΔUf = Δ E +Ub(Vb+d) - Ub(Vb)

Fitted analytic form, e.g. Murnaghan

DFT error 
cancellation
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Ge in bulk Si: energy and enthalpy

ΔUf(ε)

64 atom

8 atom
216 atom

ΔHf(p)

64 atom
8 atom

216 atom
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Conclusions
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Thermodynamics
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𝐺𝐺system = 𝐺𝐺bulk + 𝑁𝑁𝑋𝑋 Δ𝐺𝐺𝑋𝑋
𝑓𝑓 − 𝑇𝑇 𝑆𝑆conf 𝑐𝑐𝑋𝑋 + Δ𝐺𝐺interact[𝑐𝑐𝑋𝑋]

Gibb’s free energy of formation
of isolated(!) defect

𝐺𝐺 𝑝𝑝,𝑇𝑇, 𝜇𝜇𝑠𝑠 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑇𝑇 − 𝜇𝜇𝑠𝑠Δ𝑁𝑁𝑠𝑠

𝑈𝑈 𝑉𝑉,𝑇𝑇 = 0,𝑁𝑁 → 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷

System containing defect “X” at concentration cX (in total NX)

0..4 eV 0..±0.2 eV1..10 meV

Glensk et al., PRX 4, 011018 (2014)

interactions
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Coulomb interactions
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𝐸𝐸~
𝑄𝑄2

4𝜋𝜋𝜋𝜋𝑎𝑎0

𝑉𝑉 𝑟𝑟 =
1
4𝜋𝜋𝜋𝜋

1
𝑟𝑟
𝑒𝑒−𝑟𝑟/𝜆𝜆

𝜆𝜆2 =
𝜖𝜖𝜖𝜖𝜖𝜖
𝑛𝑛𝑒𝑒2

𝑎𝑎0 = 0.5 𝑛𝑛𝑛𝑛, 𝜖𝜖 = 10𝜖𝜖0,
𝑛𝑛 = 1017𝑐𝑐𝑚𝑚−3,𝑇𝑇 = 300𝐾𝐾 → 𝜆𝜆 = 12𝑛𝑛𝑛𝑛 ≈ 20𝑎𝑎0

≈ 0.3 𝑒𝑒𝑒𝑒

Most calculations done on periodic 200x200x200 lattice (8 million sites)
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Si(111) surface: convergence

c

• Role of the vacuum (for lateral: 2x2)
• Need corrections for charge states
• Lateral convergence (size of surface unit cell) for c=40 bohr
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• Corrections work perfectly for vacuum convergence
• and also improve NxN lateral convergence

DFT results + sxdefectalign-2D corrections
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Host material

coherently
strained
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Real materials may be strained

Goal: understand point defect formation energetics from
DFT (here: LDA or PBE) with “reasonable” settings

InxGa1-xN
compressive
strain (x∙11%)

GaN

H C

O
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Beyond isotropic pressure/volume

Generalized enthalpy:
H(σ) = U(V0 ε) + pV - V0σdevεdev

𝜎𝜎𝑖𝑖𝑖𝑖 =
1
V0

𝜕𝜕𝜕
𝜕𝜕𝜖𝜖𝑖𝑖𝑖𝑖

General energy-strain curve:
U(ε) = P(ln(1+ ε)ij)

Example: In in wurtzite GaN (32 atoms)
• free parameters: a and c lattice constant
• 4th-order P

nth –order polynomial
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In in GaN

ΔUf

ΔHf

[bohr]a c

0

1

ΔUf
ΔHf

0.49

0.46

[eV]

[eV]



Charged defects with DFTChristoph Freysoldt – MPI Düsseldorf 29

In in GaN

ΔVa
ΔVc

[bohr]

a
c

8

24

[bohr3]

Relaxation volume varies with strain
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Conclusions

• Robust, efficient scheme for 
thermodynamic properties of 
defects in strained material

• General-purpose non-linear energy-strain model

• Relaxation volume tensor 
depends on strain
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Elastic interactions between defects

electrostatic
charge

potential

𝑫𝑫
𝑬𝑬

dipole

scalar
vector

rank 2 tensor
rank 3 tensor

elasticity
force

displacement

stress 𝜎𝜎
strain 𝜖𝜖

elastic dipole tensor
relaxation volume tensor

vector
rank 2 tensor
rank 4 tensor
rank 6 tensornonlinear effects?
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What is DFT’s ΔE in thermodynamics? 

bulk bulk bulk

Vb+d(pb) Vb(p)

ΔE
ΔUf

1
2
𝑝𝑝 + 𝑝𝑝𝑏𝑏 𝑉𝑉𝑑𝑑

p -Δp

Δ𝐸𝐸 = Δ𝑈𝑈𝑓𝑓 + 𝑝𝑝𝑉𝑉𝑑𝑑 −
1
2Δ𝑝𝑝𝑉𝑉𝑑𝑑 = Δ𝐻𝐻𝑓𝑓 −

1
2Δ𝑝𝑝𝑉𝑉𝑑𝑑

V

U

-pb

-p
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Ge in bulk Si: relaxation volume

Relaxation volume varies with strain
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Ge in bulk Si: improvement over ΔE
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